Patents by Inventor Pradeep Nadkarni

Pradeep Nadkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170174983
    Abstract: Disclosed is a photochromic material that includes a first polymeric layer having a photochromic compound that is capable of being activated in response to a stimulus. The first polymeric layer is configured such that the activated photochromic compound becomes inactivated within 10 minutes, preferably within 5 minutes, most preferably within 1 minute, in the absence of said stimulus.
    Type: Application
    Filed: March 25, 2015
    Publication date: June 22, 2017
    Inventors: Ihab N. Odeh, Meghna N. Markanday, Jurgen Van Peer, John Van Der Wal, Pradeep Nadkarni, Theo Hoeks, Mohamed Ashraf Moideen, Girish Koripelly
  • Publication number: 20130004887
    Abstract: Disclosed herein are novel nitrone compounds, holographic recording media that include the nitrone compound(s) and a polymer binder, a method of manufacturing a holographic recording medium where the nitrone compound, as a photochromic dye, is mixed with a polymer binder to form a holographic composition and molding the holographic composition into holographic data recording medium. Disclosed herein too is a method for recording a hologram by exposing the holographic recording medium to mutually coherent signal and reference light sources at a wavelength that causes a change in the chemical structure of the nitrone compound.
    Type: Application
    Filed: October 20, 2011
    Publication date: January 3, 2013
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Shantaram Narayan Naik, Michael T. Takemori, Sumeet Jain, Pradeep Nadkarni, Mark A. Cheverton, Kiran Arunkumar Puthamane, Vinodkumar Vasudevan, Gary Davis
  • Patent number: 7541417
    Abstract: A process comprising the steps of dissolving a dihydric phenol in a solvent to form a solution A, contacting the solution A with an adsorbent material selected from the group consisting of metal oxides, modified metal oxides, activated carbons, and clays, filtering the adsorbent material to form a solution B, adding an anti-solvent to the solution B to form a solution C, and distilling the solution C, wherein the dihydric phenol is represented by Formula (I): wherein R is a hydrogen atom or an aliphatic functionality having 1 to 6 carbon atoms and n is an integer having a value of 1 to 4.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: June 2, 2009
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Sunil Ashtekar, Mahesh Malusare, Gurram Kishan, Pushpa Narayanan, Ramanarayanan GV, Arun Dixit, Pradeep Nadkarni, Jan Plen Lens
  • Patent number: 7514524
    Abstract: Disclosed herein is a method comprising reacting a phenolphthalein material and a primary hydrocarbyl amine in the presence of an acid catalyst to form a reaction mixture comprising 2-hydrocarbyl-3,3-bis(4-hydroxyaryl)phthalimidine, wherein the phenolphthalein material comprises greater than or equal to 95 weight percent phenolphthalein, based on the total weight of phenolphthalein material; quenching the reaction mixture and treating the quenched reaction mixture to obtain a first solid. The first solid is then triturated with a trituration solvent and washed to obtain a second solid, wherein the second solid comprises greater than or equal to 97 weight percent 2-hydrocarbyl-3,3-bis(4-hydroxyaryl)phthalimidine, based on the total weight of the second solid. The second solid may be polymerized to form a polycarbonate.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 7, 2009
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Rajshekhar Basale, Balakrishnan Ganesan, Venkata Rama Narayanan Ganapathy Bholta, Gurram Kishan, Surendra Kulkarni, Pradeep Nadkarni, Suresh Shanmugam, Ravindra Vikram Singh
  • Publication number: 20080242829
    Abstract: Disclosed herein is a method comprising reacting a phenolphthalein material and a primary hydrocarbyl amine in the presence of an acid catalyst to form a reaction mixture comprising 2-hydrocarbyl-3,3-bis(4-hydroxyaryl)phthalimidine, wherein the phenolphthalein material comprises greater than or equal to 95 weight percent phenolphthalein, based on the total weight of phenolphthalein material; quenching the reaction mixture and treating the quenched reaction mixture to obtain a first solid. The first solid is then triturated with a trituration solvent and washed to obtain a second solid, wherein the second solid comprises greater than or equal to 97 weight percent 2-hydrocarbyl-3,3-bis(4-hydroxyaryl)phthalimidine, based on the total weight of the second solid. The second solid may be polymerized to form a polycarbonate.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rajshekhar Basale, Balakrishnan Ganesan, Venkata Rama Narayanan Ganapathy Bholta, Gurram Kishan, Surendra Kulkarni, Pradeep Nadkarni, Suresh Shanmugam, Ravindra Vikram Singh
  • Patent number: 7423184
    Abstract: A method of making a carbonyl compound comprises contacting a compound comprising a secondary hydroxyl group with a basic metal oxide catalyst at a temperature sufficient to maintain the compound comprising a secondary hydroxyl group in a vapor phase.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: September 9, 2008
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Hugo Ingelbrecht, Arun Kumar, Ashok Ramakrishnan Menon, Pradeep Nadkarni, Rupesh Pawar
  • Publication number: 20080058497
    Abstract: A method for purifying a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine comprises contacting a crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine with a purification agent, removing a 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound from the crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine, and producing a purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidine product comprising less than 200 parts per million of the 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound. The purification agent is selected from the group consisting of an acidic material, an organic acid chloride, an organic anhydride, or a combination thereof. The 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound has a formula: wherein each R1 is independently selected from a group consisting of a hydrocarbyl radical, a nitro radical, and a halogen atom; “a” is an integer from 0 to 4; and Ar1 and Ar2 are independently at each occurrence an aromatic radical.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 6, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Balakrishnan Ganesan, Pradeep Nadkarni, Arun Kumar, Ramanarayanan V., Suresh Shanumgam, Gurram Kishan, Ravindra Singh
  • Publication number: 20070232775
    Abstract: A process comprising the steps of dissolving a dihydric phenol in a solvent to form a solution A, contacting the solution A with an adsorbent material selected from the group consisting of metal oxides, modified metal oxides, activated carbons, and clays, filtering the adsorbent material to form a solution B, adding an anti-solvent to the solution B to form a solution C, and distilling the solution C, wherein the dihydric phenol is represented by Formula (I): wherein R is a hydrogen atom or an aliphatic functionality having 1 to 6 carbon atoms and n is an integer having a value of 1 to 4.
    Type: Application
    Filed: March 30, 2006
    Publication date: October 4, 2007
    Applicant: General Electric Company
    Inventors: Sunil Ashtekar, Mahesh Malusare, Gurram Kishan, Pushpa Narayanan, Ramanarayanan GV, Arun Dixit, Pradeep Nadkarni, Jan Lens
  • Publication number: 20070197761
    Abstract: Compounds and methods for preparing 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidines having a formula of: wherein R1 is independently selected from a group consisting of a hydrocarbyl radical, a nitro radical, and a halogen atom; “a” is an integer from 0-4; and Ar1 and Ar2 are each independently an aromatic radical, are disclosed. The 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compounds are useful for preparing other useful monomers and polymers.
    Type: Application
    Filed: April 26, 2007
    Publication date: August 23, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Balakrishnan Ganesan, Gurram Kishan, Pradeep Nadkarni, Vinod Rai, C. Seetharaman
  • Publication number: 20070161821
    Abstract: Disclosed is a method for removing a neutral or an ionic guanidine compound from aqueous media optionally comprising an alkali metal halide, wherein the method is selected from the group consisting of (a) adsorption onto a carbonaceous adsorbent, (b) adsorption onto a clay adsorbent, (c) filtration through a nanofiltration membrane, and (d) removal of water and calcination.
    Type: Application
    Filed: March 12, 2007
    Publication date: July 12, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Hall, Thomas Guggenheim, James Silva, Farid Khouri, Matthew Littlejohn, Balakrishnan Ganesan, Ashok Shyadligeri, Pradeep Nadkarni
  • Publication number: 20070135612
    Abstract: A method for purifying a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine comprises contacting a crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine with a purification agent, removing a 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound from the crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine, and producing a purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidine product comprising less than 200 parts per million of the 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound. The purification agent is selected from the group consisting of an acidic material, an organic acid chloride, an organic anhydride, or a combination thereof. The 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compound has a formula: wherein each R1 is independently selected from a group consisting of a hydrocarbyl radical, a nitro radical, and a halogen atom; “a” is an integer from 0 to 4; and Ar1 and Ar2 are independently at each occurrence an aromatic radical.
    Type: Application
    Filed: December 14, 2005
    Publication date: June 14, 2007
    Inventors: Balakrishnan Ganesan, Pradeep Nadkarni, Arun S., Ramanarayanan G.V., Suresh Shanmugam, Gurram Kishan, Ravindra Singh
  • Publication number: 20070123714
    Abstract: Compounds and methods for preparing 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidines having a formula of: wherein R1 is independently selected from a group consisting of a hydrocarbyl radical, a nitro radical, and a halogen atom; “a” is an integer from 0-4; and Ar1 and Ar2 are each independently an aromatic radical, are disclosed. The 2-aryl-3-(aminoaryl)-3-(hydroxyaryl)phthalimidine compounds are useful for preparing other useful monomers and polymers.
    Type: Application
    Filed: November 29, 2005
    Publication date: May 31, 2007
    Inventors: Balakrishnan Ganesan, Gurram Kishan, Pradeep Nadkarni, Vinod Rai, C. Seetharaman
  • Publication number: 20070123712
    Abstract: A method for increasing a mean particle size of a 2-hydrocarbyl-3,3-bis(hydroxyaryl)phthalimidine is provided. The method comprises forming a mixture comprising a feedstream of the 2-hydrocarbyl-3,3-bis(4-hydroxyaryl)phthalimidine, and a solvent composition comprising an organic solvent and water, wherein the organic solvent is capable of at least partially dissolving the 2-hydrocarbyl-3,3-bis(hydroxyaryl)phthalimidine and forming an adduct with the 2-hydrocarbyl-3,3-bis(hydroxyaryl)phthalimidine. Then the mixture is heated at a temperature and for a time effective to decompose the adduct and form a 2-hydrocarbyl-3,3-bis(hydroxyaryl)phthalimidine product having a mean particle size greater than 5 microns. The 2-hydrocarbyl-3,3-bis(hydroxyaryl)phthalimidines with increased particle size are useful for producing polymers.
    Type: Application
    Filed: November 29, 2005
    Publication date: May 31, 2007
    Inventors: Balakrishnan Ganesan, Pradeep Nadkarni
  • Patent number: 7208438
    Abstract: A method of making a catalyst comprising mixing a metal oxide precursor and a pore former to form a metal oxide precursor mixture and calcining the metal oxide precursor mixture in the presence of a flowing gas having a flow rate to form the catalyst comprising metal oxide. The catalyst comprises a first distribution of pores having a median pore diameter of 10 to 50 angstroms and a second distribution of pores having a median pore diameter of 1 to 500 angstroms. The median pore diameter of the second distribution of pores is inversely related to the flow rate of the gas.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 24, 2007
    Assignee: General Electric Company
    Inventors: Hugo Gerard Eduard Ingelbrecht, Sabyasachi Mandal, Ashok Menon, Pradeep Nadkarni, Rupesh Pawar, Kuppuswamy Raghunathan, Gert-Jan Schoenmakers, Sahida Sharma
  • Publication number: 20070049767
    Abstract: A method of making a carbonyl compound comprises contacting a compound comprising a secondary hydroxyl group with a basic metal oxide catalyst at a temperature sufficient to maintain the compound comprising a secondary hydroxyl group in a vapor phase.
    Type: Application
    Filed: August 29, 2005
    Publication date: March 1, 2007
    Inventors: Hugo Ingelbrecht, Arun Kumar, Ashok Menon, Pradeep Nadkarni, Rupesh Pawar
  • Patent number: 7125954
    Abstract: A method of making a polyether polymer comprises reacting a salt of a dihydroxy-substituted aromatic hydrocarbon with a substituted aromatic compound of formula (I) Z(A1—X1)2 ??(I) in the presence of a catalyst to form an intermediate polymer having endgroups, wherein the molar ratio of the salt of a dihydroxy-substituted aromatic hydrocarbon to the substituted aromatic compound is less than 1, Z is an activating radical, A1 is an aromatic radical and X1 is fluoro, chloro, bromo or nitro; determining the additional amount of the salt of a dihydroxy-substituted aromatic hydrocarbon needed to form a final polyether polymer with a predetermined molecular weight and adding the additional amount of the salt of a dihydroxy-substituted aromatic hydrocarbon to the intermediate polymer.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: October 24, 2006
    Assignee: General Electric Company
    Inventors: Thomas Link Guggenheim, Norman Enoch Johnson, Ganesh Kailasam, Pradeep Nadkarni, David Winfield Woodruff
  • Publication number: 20060167210
    Abstract: A method of making a polyether polymer comprises reacting a salt of a dihydroxy-substituted aromatic hydrocarbon with a substituted aromatic compound of formula (I) Z(A1-X1)2 ??(I) in the presence of a catalyst to form an intermediate polymer having endgroups, wherein the molar ratio of the salt of a dihydroxy-substituted aromatic hydrocarbon to the substituted aromatic compound is less than 1, Z is an activating radical, A1 is an aromatic radical and X1 is fluoro, chloro, bromo or nitro; determining the additional amount of the salt of a dihydroxy-substituted aromatic hydrocarbon needed to form a final polyether polymer with a predetermined molecular weight and adding the additional amount of the salt of a dihydroxy-substituted aromatic hydrocarbon to the intermediate polymer.
    Type: Application
    Filed: January 27, 2005
    Publication date: July 27, 2006
    Inventors: Thomas Guggenheim, Norman Johnson, Ganesh Kailasam, Pradeep Nadkarni, David Woodruff
  • Publication number: 20050283035
    Abstract: A method for ring-halogenating an aromatic compound comprises contacting with chlorine or bromine, a mixture comprising the aromatic compound and a mixed copper salt of formula Cu(Y)X, where Y comprises a counterion derived from an organic acid, where the organic acid has a pKa relative to water of 0 or greater; and X comprises Cl, Br, I, or (SO42?)1/2; to produce a reaction mixture comprising a haloaromatic compound and a copper(II) halide residue.
    Type: Application
    Filed: June 16, 2004
    Publication date: December 22, 2005
    Inventors: Balakrishnan Ganesan, Pradeep Nadkarni
  • Publication number: 20050283034
    Abstract: A method for recovering and reusing a ring-halogenation catalyst comprises: (A) contacting an aromatic compound with chlorine or bromine in the presence of a catalyst composition, where the catalyst composition comprises at least one salt comprising a Group 4-13 metal, a lanthanide metal, or an actinide metal; and at least one organic counterion derived from an organic acid having a pKa relative to water of 0 or greater; and at least one organic sulfur compound; to form a first product mixture comprising a monochloro or a monobromo aromatic compound and a Group 4-13 metal halide, a lanthanide metal halide or an actinide metal halide; (B) separating the metal halide from the first product mixture; and (C) contacting at least a portion of the metal halide and an aromatic compound with chlorine or bromine, and at least one organic sulfur compound; to form a second product mixture comprising a monochloro or a monobromo aromatic compound and a Group 4-13 metal halide, a lanthanide metal halide or an actinide metal
    Type: Application
    Filed: June 16, 2004
    Publication date: December 22, 2005
    Inventors: Balakrishnan Ganesan, Pradeep Nadkarni, Robert Colborn, Dan Hancu
  • Publication number: 20050029194
    Abstract: Disclosed is a method for removing a neutral or an ionic guanidine compound from an aqueous media optionally comprising an alkali metal halide, wherein the method is selected from the group consisting of (a) adsorption onto a carbonaceous adsorbent, (b) adsorption onto a clay adsorbent, (c) filtration through a nanofiltration membrane, and (d) removal of water and calcination.
    Type: Application
    Filed: December 22, 2003
    Publication date: February 10, 2005
    Inventors: David Hall, Thomas Guggenheim, James Silva, Farid Khouri, Matthew Littlejohn, Balakrishnan Ganesan, Ashok Shyadligeri, Pradeep Nadkarni