Patents by Inventor Pradeep Shettigar

Pradeep Shettigar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240061006
    Abstract: Reducing a spring softening effect on a capacitive sense element of an electromechanical sensor is presented herein. A system, such as a microphone or an accelerometer, comprises an electromechanical sensor and a voltage-to-voltage converter component. The electromechanical sensor comprises a capacitive sense element and a bias voltage component that applies a bias voltage to a sense electrode of the capacitive sense element. The voltage-to-voltage converter component couples a positive feedback voltage to the sense electrode to maintain a constant charge at the sense electrode to facilitate a reduction of charge flow in the electromechanical sensor representing a spring softening effect on the capacitive sense element. In an example, the spring softening effect on the sense element alters a resonant frequency of the sense element and a gain of the sense element. In another example, the charge flow corresponds to a parasitic capacitance that is electrically coupled to the sense electrode.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 22, 2024
    Inventors: Joseph Seeger, Pradeep Shettigar
  • Patent number: 11835538
    Abstract: Reducing a sensitivity of an electromechanical sensor is presented herein. The electromechanical sensor comprises a sensitivity with respect to a variation of a mechanical-to-electrical gain of a sense element of the electromechanical sensor; and a voltage-to-voltage converter component that minimizes the sensitivity by coupling, via a defined feedback capacitance, a positive feedback voltage to a sense electrode of the sense element—the sense element electrically coupled to an input of the voltage-to-voltage converter component. In one example, the voltage-to-voltage converter component minimizes the sensitivity by maintaining, via the defined feedback capacitance, a constant charge at the sense electrode. In another example, the electromechanical sensor comprises a capacitive sense element comprising a first node comprising the sense electrode. Further, a bias voltage component can apply a bias voltage to a second node of the electromechanical sensor.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: December 5, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Joseph Seeger, Pradeep Shettigar
  • Publication number: 20220413003
    Abstract: Reducing a sensitivity of an electromechanical sensor is presented herein. The electromechanical sensor comprises a sensitivity with respect to a variation of a mechanical-to-electrical gain of a sense element of the electromechanical sensor; and a voltage-to-voltage converter component that minimizes the sensitivity by coupling, via a defined feedback capacitance, a positive feedback voltage to a sense electrode of the sense element—the sense element electrically coupled to an input of the voltage-to-voltage converter component. In one example, the voltage-to-voltage converter component minimizes the sensitivity by maintaining, via the defined feedback capacitance, a constant charge at the sense electrode. In another example, the electromechanical sensor comprises a capacitive sense element comprising a first node comprising the sense electrode. Further, a bias voltage component can apply a bias voltage to a second node of the electromechanical sensor.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 29, 2022
    Inventors: Joseph Seeger, Pradeep Shettigar
  • Patent number: 11428702
    Abstract: Reducing a sensitivity of an electromechanical sensor is presented herein. The electromechanical sensor comprises a sensitivity with respect to a variation of a mechanical-to-electrical gain of a sense element of the electromechanical sensor; and a voltage-to-voltage converter component that minimizes the sensitivity by coupling, via a defined feedback capacitance, a positive feedback voltage to a sense electrode of the sense element—the sense element electrically coupled to an input of the voltage-to-voltage converter component. In one example, the voltage-to-voltage converter component minimizes the sensitivity by maintaining, via the defined feedback capacitance, a constant charge at the sense electrode. In another example, the electromechanical sensor comprises a capacitive sense element comprising a first node comprising the sense electrode. Further, a bias voltage component can apply a bias voltage to a second node of the electromechanical sensor.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: August 30, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Joseph Seeger, Pradeep Shettigar
  • Patent number: 11092988
    Abstract: A start-up speed enhancement circuit and method for lower-power regulators is provided herein. Operations of a method can comprise detecting a condition of a power regulator being a start-up condition and applying a first current and a second current to the power regulator based on the start-up condition. The method can also comprise determining the condition of the power regulator changes from the start-up condition to an operation condition. Further, the method can comprise stopping application of the second current to the power regulator based on the condition being the operation condition.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: August 17, 2021
    Assignee: INVENSENSE, INC.
    Inventors: Le Jin, Pradeep Shettigar, Pablo Moreno Galbis
  • Publication number: 20200097033
    Abstract: A start-up speed enhancement circuit and method for lower-power regulators is provided herein. Operations of a method can comprise detecting a condition of a power regulator being a start-up condition and applying a first current and a second current to the power regulator based on the start-up condition. The method can also comprise determining the condition of the power regulator changes from the start-up condition to an operation condition. Further, the method can comprise stopping application of the second current to the power regulator based on the condition being the operation condition.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 26, 2020
    Inventors: Le Jin, Pradeep Shettigar, Pablo Moreno Galbis
  • Publication number: 20200057087
    Abstract: Reducing a sensitivity of an electromechanical sensor is presented herein. The electromechanical sensor comprises a sensitivity with respect to a variation of a mechanical-to-electrical gain of a sense element of the electromechanical sensor; and a voltage-to-voltage converter component that minimizes the sensitivity by coupling, via a defined feedback capacitance, a positive feedback voltage to a sense electrode of the sense element—the sense element electrically coupled to an input of the voltage-to-voltage converter component. In one example, the voltage-to-voltage converter component minimizes the sensitivity by maintaining, via the defined feedback capacitance, a constant charge at the sense electrode. In another example, the electromechanical sensor comprises a capacitive sense element comprising a first node comprising the sense electrode. Further, a bias voltage component can apply a bias voltage to a second node of the electromechanical sensor.
    Type: Application
    Filed: July 2, 2019
    Publication date: February 20, 2020
    Inventors: Joseph Seeger, Pradeep Shettigar