Patents by Inventor Prajit Kulkarni

Prajit Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10397465
    Abstract: Methods, systems, and apparatuses are provided to perform phase-detection autofocus control. By way of example, the methods can receive luminance values measured by a plurality of sensing elements in a sensor array, and the sensing elements can include imaging pixels and phase-detection pixels. The methods can compare luminance values measured by at least one of the phase-detection pixels to luminance values associated with a subset of the imaging pixels including two or more imaging pixels. The comparison can be performed at extended horizontal density or full horizontal density along a first sensor-array row that includes the at least one phase-detection pixel and the two or more imaging pixels. The methods can also perform a phase-detection autofocus operation based on an outcome of the comparison.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: August 27, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Micha Galor Gluskin, Prajit Kulkarni, Jisoo Lee
  • Publication number: 20190075233
    Abstract: Methods, systems, and apparatuses are provided to perform phase-detection autofocus control. By way of example, the methods can receive luminance values measured by a plurality of sensing elements in a sensor array, and the sensing elements can include imaging pixels and phase-detection pixels. The methods can compare luminance values measured by at least one of the phase-detection pixels to luminance values associated with a subset of the imaging pixels including two or more imaging pixels. The comparison can be performed at extended horizontal density or full horizontal density along a first sensor-array row that includes the at least one phase-detection pixel and the two or more imaging pixels. The methods can also perform a phase-detection autofocus operation based on an outcome of the comparison.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 7, 2019
    Inventors: Micha Galor Gluskin, Prajit Kulkarni, Jisoo Lee
  • Patent number: 9230340
    Abstract: An imaging system may be provided having an image sensor and a fixed-rate codec for encoding image data from the image sensor into a fixed-rate bitstream. The image sensor may include an array of image pixels with a corresponding Bayer pattern array of color filter elements. The codec may include circuits for partitioning the image data into fixed-size blocks of image data and compressing the image data in each fixed-size block based on the image content in that block using a logarithm-based quantization of selected transform coefficients. The available bits for each block may be allocated to various components such as color components of the data based on the complexity of the image content in each component. The bitstream may include header information with pointers to coefficient locations within each block. The header information may be compressed prior to insertion into the bitstream.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 5, 2016
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Prajit Kulkarni
  • Patent number: 8922707
    Abstract: Imaging systems with image sensors and image processing circuitry are provided. The image processing circuitry may identify motion and perform autofocus (e.g., continuous autofocus) using images captured by an image sensor. Auto exposure metrics such as average luminance values and autofocus statistics such as sharpness scores may be calculated for each image. The auto exposure metrics may be used to calculate motion scores and identify directional motion between a series of captured images. The motion scores may be used with the sharpness scores to determine when to perform autofocus functions such as when to refocus a lens for a continuous autofocus application. For example, the motion scores may be monitored to identify motion that exceeds a given magnitude and duration. After identification of motion, motion scores and sharpness scores may be used to determine when a given scene has stabilized and when the lens should be refocused.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: December 30, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Prajit Kulkarni, Sheng Lin, David R. Pope
  • Publication number: 20130293738
    Abstract: An imaging system may be provided haying an image sensor and a fixed-rate codec for encoding image data from the image sensor into a fixed-rate bitstream. The image sensor may include an array of image pixels with a corresponding Bayer pattern array of color filter elements. The codec may include circuits for partitioning the image data into fixed-size blocks of image data and compressing the image data in each fixed-size block based on the image content in that block using, a logarithm-based quantization of selected transform coefficients. The available bits for each block. may be allocated to various components such as color components of the data based on the complexity of the image content in each component. The bitstream may include header information with pointers to coefficient locations within each block. The header information may be compressed prior to insertion into the bitstream.
    Type: Application
    Filed: April 25, 2013
    Publication date: November 7, 2013
    Applicant: Aptina Imaging Corporation
    Inventor: Prajit Kulkarni
  • Patent number: 8294811
    Abstract: This is generally directed to auto-focusing techniques based on statistical blur estimation. An image can be captured at two or more candidate lens positions. The amount of blur of each image can then be determined, and the image containing the least amount of blur can be chosen as the “in-focus” image. In some embodiments, the amount of blur of an image can be determined by identifying how “Gaussian” an image is. Characteristics that are more Gaussian in nature can indicate that the image is more blurry. The Gaussianity of an image can be determined by estimating a generalized Gaussian shape parameter for that image. A smaller shape parameter can indicate the image is less Gaussian in nature. The shape parameter can be estimated in any suitable manner such as, for example, through a 2-d discrete wavelet transform, through a 1-d discrete wavelet transform, or through any other suitable manner.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: October 23, 2012
    Assignee: Aptina Imaging Corporation
    Inventor: Prajit Kulkarni
  • Publication number: 20120188386
    Abstract: Imaging systems with image sensors and image processing circuitry are provided. The image processing circuitry may identify motion and perform autofocus (e.g., continuous autofocus) using images captured by an image sensor. Auto exposure metrics such as average luminance values and autofocus statistics such as sharpness scores may be calculated for each image. The auto exposure metrics may be used to calculate motion scores and identify directional motion between a series of captured images. The motion scores may be used with the sharpness scores to determine when to perform autofocus functions such as when to refocus a lens for a continuous autofocus application. For example, the motion scores may be monitored to identify motion that exceeds a given magnitude and duration. After identification of motion, motion scores and sharpness scores may be used to determine when a given scene has stabilized and when the lens should be refocused.
    Type: Application
    Filed: August 11, 2011
    Publication date: July 26, 2012
    Inventors: Prajit Kulkarni, Sheng Lin, David R. Pope
  • Publication number: 20110032413
    Abstract: This is generally directed to auto-focusing techniques based on statistical blur estimation. An image can be captured at two or more candidate lens positions. The amount of blur of each image can then be determined, and the image containing the least amount of blur can be chosen as the “in-focus” image. In some embodiments, the amount of blur of an image can be determined by identifying how “Gaussian” an image is. Characteristics that are more Gaussian in nature can indicate that the image is more blurry. The Gaussianity of an image can be determined by estimating a generalized Gaussian shape parameter for that image. A smaller shape parameter can indicate the image is less Gaussian in nature. The shape parameter can be estimated in any suitable manner such as, for example, through a 2-d discrete wavelet transform, through a 1-d discrete wavelet transform, or through any other suitable manner.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Applicant: Aptina Imaging Corporation
    Inventor: Prajit Kulkarni