Patents by Inventor Pramod Marru

Pramod Marru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971594
    Abstract: The present disclosure provides an optical fiber cable (100). The optical fiber cable (100) includes one or more optical fiber (102), one or more loose tube (104) surrounding the one or more optical fiber (102) and an outer sheath (108) surrounding the one or more loose tube (104). The material composition of the one or more loose tube (104) is a mixture of a first material and a second material. The flexural modulus of the first material is at least 1000 MPa. The flexural modulus of the second material is at most 50 MPa. The material composition of the outer sheath (108) is a mixture of a first material and a second material. The flexural modulus of the first material is at least 500 MPa. The flexural modulus of the second material is at most 50 MPa.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: April 30, 2024
    Inventors: Pramod Marru, Sravan Kumar
  • Publication number: 20230236374
    Abstract: The present invention relates to an optical fiber cable (400, 500) with flexible wrapping tubes comprising a plurality of unit bundles packed in the optical fiber cable (400, 500), where each unit bundle has a plurality of optical fibers (106) enveloped by a non-extruded film (100), and at least one of the unit bundles takes a non-circular shape in a packed configuration and a sheath (404, 504) enveloping the plurality of unit bundles. Each unit bundle is formed by wrapping the non-extruded film (100) around the optical fibers (106) such that width edges of the non-extruded film (100) overlap along the length of the optical fiber cable (400, 500). Alternatively, the non-extruded film (100) is wrapped around the plurality of optical fibers (106) helically.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 27, 2023
    Inventors: Pramod Marru, Kawarpreet Singh
  • Publication number: 20230228960
    Abstract: The present invention relates to an optical fiber cable (100, 200, 300) comprising a plurality of tubes (104) and a sheath (114) encapsulating the plurality of tubes (104) with a plurality of optical fibers (106). At least one tube of the plurality of tubes (104) has young's modulus that is different from other tubes and the young's modulus that is at least 30% more than young's modulus of the other tubes. In particular, the plurality of tubes (104) is arranged in an innermost layer (108) and an outermost layer (110). Additionally, young's modulus of the innermost layer (108) is greater than young's modulus of the outermost layer (110). Further, the diameter of the central strength member (102) is in a range of 1.5 millimetres to 6 millimetres.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 20, 2023
    Inventors: Pramod Marru, Srinivas Pai
  • Publication number: 20230204894
    Abstract: The present disclosure provides an optical fiber cable (100). The optical fiber cable (100) includes one or more optical fiber (102), one or more loose tube (104) surrounding the one or more optical fiber (102) and an outer sheath (108) surrounding the one or more loose tube (104). The material composition of the one or more loose tube (104) is a mixture of a first material and a second material. The flexural modulus of the first material is at least 1000 MPa. The flexural modulus of the second material is at most 50 MPa. The material composition of the outer sheath (108) is a mixture of a first material and a second material. The flexural modulus of the first material is at least 500 MPa. The flexural modulus of the second material is at most 50 MPa.
    Type: Application
    Filed: March 21, 2022
    Publication date: June 29, 2023
    Applicant: Sterlite Technologies Limited
    Inventors: Pramod Marru, Sravan Kumar
  • Publication number: 20230204887
    Abstract: A strength member (202, 302) for use in an optical fiber cable and manufacturing method thereof are provided. The strength member comprises a polymer matrix reinforced with one or more yarns, wherein the polymer matrix is a blend of a resin and an inorganic filler. The resin is a polyurethane resin and the inorganic filler is one or more of Magnesium Hydroxide, Aluminium Trihydrate, Zinc borate, Antimony Trioxide, Ammonium Polyphosphate, molybdate based filler and clay nanocomposite. The manufacturing method includes coating the one or more strength yarns with the polymer matrix and curing of the polymer matrix. The inorganic filler is blended in third wet bath of the resin followed by two wet baths of the resin only and the resin is cured after each wet bath. The strength member produces a smoke density of less than 170 at heat flux 50 kW/m2 for 20 minutes.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 29, 2023
    Applicant: Sterlite Technologies Limited
    Inventor: Pramod Marru
  • Publication number: 20230185043
    Abstract: The present invention relates to an optical fibre cable (100) and the method of manufacturing thereof. In particular, the optical fibre cable (100) comprises a plurality of optical fibres (102), one or more layers (104) enveloping the plurality of optical fibres (102), a metallic layer (108) surrounding one or more layers (104), an outer sheath (112), and a separation layer (110) sandwiched between the metallic layer (108) and the outer sheath (112). Particularly, binding between the metallic layer (108) and the separation layer (110) is defined as metal binding and binding between the separation layer (110) and the outer sheath (112) is defined as sheath binding. Further, the metal binding is less than the sheath binding.
    Type: Application
    Filed: March 27, 2022
    Publication date: June 15, 2023
    Applicant: Sterlite Technologies Limited
    Inventors: Jyotiprakash Parida, Pramod Marru, Aparna Nath
  • Patent number: 11619787
    Abstract: A strength member (202, 302, 402) for use in an optical fiber cable (200, 300, 400) and manufacturing method thereof. The strength member comprises a plurality of reinforced yarns and one or more layers of epoxy resin over the plurality of reinforced yarns, wherein the one or more layers of epoxy resin have a modified surface such that a strength member friction coefficient is between 0.3 to 0.5. The strength member friction coefficient is measured between a surface of a sheath (204, 304, 404) of the optical fiber cable and the modified surface of the one or more layers of epoxy resin. The one or more layers of epoxy resin are blended with at least one of sand crystals and silicon dioxide powder, wherein concentration of the sand crystals or the silicon dioxide powder in the one or more layers of epoxy resin is 50 to 100 phr (Parts-per-Hundred-Resin).
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: April 4, 2023
    Assignee: Sterlite Technologies Limited
    Inventors: Pramod Marru, Aparna Nath
  • Publication number: 20220019046
    Abstract: The present disclosure provides a thermal resistant water blocking tape for use in an optical fiber cable. The thermal resistant water blocking tape includes a water blocking tape. The water blocking tape is resistant to water penetration. The water blocking tape is defined by a top surface and a bottom surface. In addition, the water blocking tape has an intumescent material that reduces transmission of thermal radiations across the thermal resistant water blocking tape at elevated temperature. The intumescent material may be coated on the water blocking tape. The intumescent material may produce insulating carbonaceous foam at elevated temperature.
    Type: Application
    Filed: March 27, 2021
    Publication date: January 20, 2022
    Inventors: Pramod Marru, Vikash Shukla, Atulkumar Mishra, Nikhil Puri, Santhosh Ghorpade
  • Publication number: 20210041655
    Abstract: The present disclosure provides an optical fibre cable. The optical fibre cable includes a plurality of buffer tubes and a plurality of interstitial fillers in spaces between the plurality of buffer tubes. The plurality of interstitial fillers is arranged in spaces between the plurality of buffer tubes. The optical fibre cable may include a plurality of water swellable yarns. There is an optical fibre ribbon stack including a plurality of optical fibre ribbons. The plurality of optical fibre ribbons are stacked to form the optical fibre ribbon stack. The present disclosure provides a fire retardant optical fibre cable includes the plurality of buffer tubes and one or more numbers of interstitial fillers and includes at least one of a thermal resistant water blocking tape, a fire resistant water blocking tape and a Mica tape wrapped over the core of the fire retardant optical fibre cable.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 11, 2021
    Inventors: Kishore Sahoo, Sravan Kumar, Atulkumar Mishra, Vikash Shukla, Akhil Garg, Hemanth Kondapalli, Mahesh Deshpande, Gahininath Shinde, Venkatesh Murthy, Pramod Marru