Patents by Inventor Praneeth Kumar Chakravarthula

Praneeth Kumar Chakravarthula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230171385
    Abstract: A method for learned hardware-in-the-loop phase retrieval for holographic near-eye displays includes generating simulated ideal output images of a holographic display. The method further includes capturing real output images of the holographic display. The method further includes learning a mapping between the simulated ideal output images and the real output images. The method further includes using the learned mapping to solve for an aberration compensating hologram phase and using the aberration compensating hologram phase to adjust a phase pattern of a spatial light modulator of the holographic display.
    Type: Application
    Filed: November 29, 2022
    Publication date: June 1, 2023
    Inventors: Praneeth Kumar Chakravarthula, Felix Heide, Ethan Tseng, Tarun Srivastava
  • Publication number: 20210326690
    Abstract: The goal of computer generated holography (CGH) is to synthesize custom illumination patterns by shaping the wavefront of a coherent light beam. Existing algorithms for CGH rely on iterative optimization with a fundamental trade-off between hologram fidelity and computation speed, making them inadequate for high-speed holography applications such as optogenetic photostimulation, optical trapping, or virtual reality displays. We propose a new algorithm, DeepCGH, that relies on a convolutional neural network to eliminate iterative exploration and rapidly synthesize high resolution holograms with fixed computational complexity. DeepCGH is an unsupervised model which can be tailored for specific tasks with customizable training data sets and an explicit cost function. Results show that our method computes 3D holograms at record speeds and with better accuracy than existing techniques.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 21, 2021
    Inventors: Nicolas Christian Richard Pégard, Mohammad Hossein Eybposh, Nicholas William Caira, Mathew Abuya Atisa, Praneeth Kumar Chakravarthula
  • Patent number: 11137719
    Abstract: A method for digital holography includes modeling a hologram using a forward propagation model that models propagation of a light field from a hologram plane to an image plane. The method further includes computing the hologram as a solution to an optimization problem that is based on the model. The method further includes configuring at least one spatial light modulator using the hologram. The method further includes illuminating the spatial light modulator using a light source to create a target image.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: October 5, 2021
    Assignee: UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Praneeth Kumar Chakravarthula, Felix Heide
  • Publication number: 20200192287
    Abstract: A method for digital holography includes modeling a hologram using a forward propagation model that models propagation of a light field from a hologram plane to an image plane. The method further includes computing the hologram as a solution to an optimization problem that is based on the model. The method further includes configuring at least one spatial light modulator using the hologram. The method further includes illuminating the spatial light modulator using a light source to create a target image.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 18, 2020
    Inventors: Praneeth Kumar Chakravarthula, Felix Heide
  • Patent number: 10319154
    Abstract: A system for providing auto-focus augmented reality (AR) viewing of real and virtual objects includes a frame for holding AR viewing components on a user's head and optically in front of the user's eyes. The AR viewing components include an internal virtual objects display for displaying virtual objects to a user. Internal and external focus correction modules respectively adjust focal distances of virtual and real objects, are respectively configurable to adjust the focal distances of the virtual and real objects differently based on the different user vision types, and operate to respectively adjust the focal distances of the virtual and real objects such that the virtual and real objects are simultaneously in focus based on the vision type of the user.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: June 11, 2019
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Praneeth Kumar Chakravarthula, Henry Fuchs