Patents by Inventor Pranesh Sinha

Pranesh Sinha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11432216
    Abstract: Certain aspects of the present disclosure provide techniques for smart data service link switching (SLS) among subscriber identity modules (SIMs). An example method that may be performed by a user equipment (UE) includes communicating data via an active link, wherein the active link comprises a first link of a first data subscriber identity module (SIM) of the UE; determining, based on one or more parameters, to switch the active link to a second link of a second data SIM of the UE; and switching the active link to the second link.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: August 30, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Hanyang Wang, Pranesh Sinha, Ajit Chourasia, Zheng Fang
  • Publication number: 20210029604
    Abstract: Certain aspects of the present disclosure provide techniques for smart data service link switching (SLS) among subscriber identity modules (SIMs). An example method that may be performed by a user equipment (UE) includes communicating data via an active link, wherein the active link comprises a first link of a first data subscriber identity module (SIM) of the UE; determining, based on one or more parameters, to switch the active link to a second link of a second data SIM of the UE; and switching the active link to the second link.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 28, 2021
    Inventors: Hanyang WANG, Pranesh SINHA, Ajit CHOURASIA, Zheng FANG
  • Patent number: 8199779
    Abstract: Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: June 12, 2012
    Assignee: Wi-LAN, Inc.
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Leo Gallagher, Sheldon L. Gilbert, Stephen C. Pollmann, Frederick W. Price, Blaine C. Readler, John Wiss, Eli Arviv
  • Publication number: 20110122981
    Abstract: Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
    Type: Application
    Filed: February 4, 2011
    Publication date: May 26, 2011
    Applicant: WI-LAN, INC.
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Leo Gallagher, Sheldon L. Gilbert, Stephen C. Pollmann, Frederick W. Price, Blaine C. Readler, John Wiss, Eli Arviv
  • Patent number: 7907640
    Abstract: A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. A best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: March 15, 2011
    Assignee: Wi-LAN, Inc.
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Leo Gallagher, Sheldon L. Gilbert, Stephen C. Pollmann, Frederick W. Price, Blaine C. Readler, John Wiss, Eli Arviv
  • Publication number: 20090279652
    Abstract: Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
    Type: Application
    Filed: July 23, 2009
    Publication date: November 12, 2009
    Applicant: WI-LAN, INC.
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Leo Gallagher, Sheldon L. Gilbert, Stephen C. Pollmann, Frederick W. Price, Blaine C. Readler, John Wiss, Eli Arviv
  • Patent number: 7583705
    Abstract: One or more clocks are synchronized across a communication link using a synchronization signal sent from a master to a slave clock. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate. The synchronization signal receipt time is compared to the expected time and the slave clock is adjusted until the times match. Master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks. The secondary independent clocks may be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: September 1, 2009
    Assignee: Wi-LAN, Inc.
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Leo Gallagher, Sheldon L. Gilbert, Stephen C. Pollmann, Frederick W. Price, Blaine C. Readler, John Wiss, Eli Arviv
  • Publication number: 20070002987
    Abstract: Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 4, 2007
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Gallagher, Sheldon Gilbert, Stephen Pollmann, Frederick Price, Blaine Readler, John Wiss, Eli Arviv
  • Patent number: 6944188
    Abstract: Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: September 13, 2005
    Assignee: Wi-Lan, Inc.
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Leo Gallagher, Sheldon L. Gilbert, Stephen C. Pollmann, Frederick W. Price, Blaine C. Readler, John Wiss, Ell Arviv
  • Patent number: 6882690
    Abstract: A soft trellis slicer is provided in a high definition television (HDTV) receiver. The soft trellis slicer calculates a decision value and a confidence value corresponding to a phase angle error of a signal processed by the receiver. The receiver includes an equalizer, a phase tracking loop and a trellis decoder. The equalizer provides an equalized signal to the phase tracking loop; and the phase tracking loop calculates a phase angle error for the equalized signal. The trellis decoder calculates a decision value and a confidence value. The trellis decoder provides the decision value and the confidence value to the phase tracking loop, which calculates the reliability of the phase angle error based upon the phase angle error and the decision value and the confidence value provided by the trellis decoder. The trellis decoder calculates the decision value based upon a best path metric and calculates the confidence value based upon the best path metric and a second best path metric.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: April 19, 2005
    Assignee: Conexant Systems, Inc.
    Inventors: Magnus H. Berggren, Pranesh Sinha, Itzhak Florentin
  • Publication number: 20020150155
    Abstract: An equalizer for equalizing channel multi-path distortion includes digital filters. To improve the convergence speed and tracking ability of the equalizer while lowering noise and power consumption, the digital filters are divided into sections. Various parameters of the sections, such as step-size, shutdown and update rates can be controlled. Control of the various parameters can be realized either in software on an embedded or external processor or by dedicated hardware.
    Type: Application
    Filed: February 26, 2001
    Publication date: October 17, 2002
    Inventors: Itzhak Florentin, Pranesh Sinha, William Farnbach, Itzhak Gurantz
  • Publication number: 20020114354
    Abstract: Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output.
    Type: Application
    Filed: February 21, 2001
    Publication date: August 22, 2002
    Inventors: Pranesh Sinha, Sharon Akler, Yair Bourlas, Timothy Leo Gallagher, Sheldon L. Gilbert, Stephen C. Pollmann, Fredrick W. Price, Blaine C. Readler, John Wiss, Ell Arviv
  • Publication number: 20020064244
    Abstract: An improved phase noise tracker comprising a first rotator, delayed second rotator and feedback loop coupled to the first and second rotators. The feedback loop further comprises a phase error detector and low-pass filter. The phase error detector estimates a phase error value of the first rotator's output, and the low-pass filter smooths out the output of the phase error detector by accumulating previous estimated phase error values from the phase error detector. The output of the feedback loop, from the low-pass filter's output, is fedback to a phase control input of the first rotator to control the phase rotation of the first rotator. The feedback loop's output is fed to a phase control input of the delayed second rotator to control its phase rotation. Therefore, the improved phase noise tracker tracks phase noise based on both previous and future phase error values, which more accurately corrects for phase noise.
    Type: Application
    Filed: November 30, 2000
    Publication date: May 30, 2002
    Applicant: Conexant Systems, Inc.
    Inventors: Magnus H. Berggren, Pranesh Sinha
  • Patent number: 5898905
    Abstract: A baseband simulation system is disclosed for testing an RF subsystem of a communication device, such as a cellular telephone, cordless telephone, etc. A preferred embodiment has a computer connected to an interface card which in turn is connected to a baseband simulation subsystem. The baseband simulation subsystem is connected to the RF subsystem under test. The baseband simulation subsystem includes three ports: a timing and control (TAC) port, an IQ port, and general purpose input output (GPIO) port. The TAC port receives a master clock signal from an external source and generates plural clocks therefrom. The IQ and GPIO ports receives at least one of these plural clocks. In a transmit mode, in response to one or more of the clocks generated by the TAC port, the IQ port retrieves from its memory prestored discrete I and Q samples and reconstructs therefrom arbitrary transmit analog i and q signals which are provided to the RF subsystem under test.
    Type: Grant
    Filed: January 4, 1996
    Date of Patent: April 27, 1999
    Assignee: Institute of Microelectronics
    Inventors: Christopher Aldridge, Pranesh Sinha
  • Patent number: 5887244
    Abstract: A baseband simulation system is disclosed for testing an RF subsystem of a communication device, such as a cellular telephone, cordless telephone, etc. A preferred embodiment has a computer connected to an interface card which in turn is connected to a baseband simulation subsystem. The baseband simulation subsystem is connected to the RF subsystem under test. The baseband simulation subsystem includes three ports: a timing and control (TAC) port, an IQ port, and general purpose input output (GPIO) port. The TAC port receives a master clock signal from an external source and generates plural clocks therefrom. The IQ and GPIO ports receives at least one of these plural clocks. In a transmit mode, in response to one or more of the clocks generated by the TAC port, the IQ port retrieves from its memory prestored discrete I and Q samples and reconstructs therefrom arbitrary transmit analog i and q signals which are provided to the RF subsystem under test.
    Type: Grant
    Filed: January 4, 1996
    Date of Patent: March 23, 1999
    Assignee: Institute of Microelectronics
    Inventors: Christopher Aldridge, Pranesh Sinha
  • Patent number: 5737693
    Abstract: A baseband simulation system is disclosed for testing an RF subsystem of a communication device, such as a cellular telephone, cordless telephone, etc. A preferred embodiment has a computer connected to an interface card which in turn is connected to a baseband simulation subsystem. The baseband simulation subsystem is connected to the RF subsystem under test. The baseband simulation subsystem includes three ports: a timing and control (TAC) port, an IQ port, and general purpose input output (GPIO) port. The TAC port receives a master clock signal from an external source and generates plural clocks therefrom. The IQ and GPIO ports receives at least one of these plural clocks. In a transmit mode, in response to one or more of the clocks generated by the TAC port, the IQ port retrieves from its memory prestored discrete I and Q samples and reconstructs therefrom arbitrary transmit analog i and q signals which are provided to the RF subsystem under test.
    Type: Grant
    Filed: January 4, 1996
    Date of Patent: April 7, 1998
    Assignee: Institute of Microelectronics
    Inventors: Christopher Aldridge, Pranesh Sinha