Patents by Inventor Prasanth Jeevan
Prasanth Jeevan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250025241Abstract: Methods and systems for instrument tracking and navigation are described. In one embodiment, a non-transitory computer readable storage medium has stored thereon instructions that, when executed, cause a processor of a device to at least receive position sensor data from at least one position sensor tracking an instrument positioned within a luminal network, determine a first estimated state of the instrument derived from the position sensor data, determine a second estimated state of the instrument based on the position sensor data and at least one other type of position data, determine a location transform based on the second estimated state and the first estimated state, adjust the first estimated state based on the location transform to determine a third estimated state of the instrument, and output the third estimated state of the instrument.Type: ApplicationFiled: October 2, 2024Publication date: January 23, 2025Inventors: Hedyeh Rafii-Tari, Prasanth Jeevan
-
Publication number: 20240415370Abstract: Methods and apparatuses provide improved navigation through tubular networks such as lung airways by providing improved estimation of location and orientation information of a medical instrument (e.g., an endoscope) within the tubular network. Various input data such as image data, EM data, and robot data are used by different algorithms to estimate the state of the medical instrument, and the state information is used to locate a specific site within a tubular network and/or to determine navigation information for what positions/orientations the medical instrument should travel through to arrive at the specific site. Probability distributions together with confidence values are generated corresponding to different algorithms are used to determine the medical instrument's estimated state.Type: ApplicationFiled: August 29, 2024Publication date: December 19, 2024Applicant: Auris Health, Inc.Inventors: David S. Mintz, Atiyeh Ghoreyshi, Prasanth Jeevan, Yiliang Xu, Gehua Yang, Matthew Joseph Leotta, Charles V. Stewart
-
Patent number: 12089804Abstract: Methods and apparatuses provide improved navigation through tubular networks such as lung airways by providing improved estimation of location and orientation information of a medical instrument (e.g., an endoscope) within the tubular network. Various input data such as image data, EM data, and robot data are used by different algorithms to estimate the state of the medical instrument, and the state information is used to locate a specific site within a tubular network and/or to determine navigation information for what positions/orientations the medical instrument should travel through to arrive at the specific site. Probability distributions together with confidence values are generated corresponding to different algorithms are used to determine the medical instrument's estimated state.Type: GrantFiled: July 27, 2022Date of Patent: September 17, 2024Assignee: Auris Health, Inc.Inventors: David S. Mintz, Atiyeh Ghoreyshi, Prasanth Jeevan, Yiliang Xu, Gehua Yang, Matthew Joseph Leotta, Charles V. Stewart
-
Publication number: 20240215856Abstract: A system including an instrument having an elongate body, and a control system communicatively coupled to the instrument. The control system is configured to access a branched skeleton model defining a skeleton including a plurality of segments representing respective segments of a luminal network, identify a segment of the plurality of segments of the branched skeleton model corresponding to a position of a distal end of the instrument, determine a depth along the segment corresponding to the position of the distal end of the instrument, and determine a position of the distal end of the instrument relative to an anatomical map of the luminal network based on the identified segment and the depth along the segment.Type: ApplicationFiled: March 15, 2024Publication date: July 4, 2024Inventors: Hedyeh Rafii-Tari, Prasanth Jeevan, Douglas T. Boyd, Melissa A. Teran, Alexander James Sheehy, Nicolas E. Robert, Miroslav Drahos, Jeffery D. Howard, Andrew Esbenshade Zeldis, René Ango Mambembe
-
Publication number: 20240164634Abstract: An object sizing system sizes an object positioned within an anatomical feature. The object sizing system navigates an elongate body to a location within an anatomical feature and proximate to the object. An imaging sensor coupled to the elongate body captures images of the object. The object sizing system captures the object with a basket. The object sizing system captures an image of the object with the imaging sensor. The object sizing system detects a basket marker in the captured image. The object sizing system determines a distance from the object to the imaging sensor based on the detected basket marker. The object sizing system determines an estimated size of the object based at least in part on the distance.Type: ApplicationFiled: January 29, 2024Publication date: May 23, 2024Inventors: David S. Mintz, David M. Schummers, Prasanth Jeevan, Hedyeh Rafii-Tari, Ritwik Ummalaneni
-
Patent number: 11969217Abstract: Certain aspects relate to systems and techniques for navigation path tracing. In one aspect, a system displays a preoperative model of a luminal network is displayed. The system determines a position of an instrument within the luminal network relative to the preoperative model. Based on the position of the instrument relative to the preoperative model, the system determines whether to enter a path tracing mode. In path tracing mode the system displays visual indicia indicative of a path of the instrument with respect to the displayed preoperative model. The visual indicia may be used to visual the navigation path of the instrument and/or to extend the preoperative model.Type: GrantFiled: June 2, 2021Date of Patent: April 30, 2024Assignee: Auris Health, Inc.Inventors: Hedyeh Rafii-Tari, Prasanth Jeevan
-
Patent number: 11957446Abstract: Certain aspects relate to systems and techniques for medical instrument navigation and targeting. In one aspect, a system includes a medical instrument having an elongate body and at least one sensor, a display, a processor, and a memory storing a model of a mapped portion of a luminal network and a position of a target with respect to the model. The processor may be configured to: determine, based on data from the at least one sensor, a position and orientation of a distal end of the medical instrument with respect to the model, and cause, on at least a portion of the display, a rendering of the model, the position of the target, and the position and orientation of the distal end of the medical instrument. The rendering may be based on a viewpoint directed at the target and different from a viewpoint of the medical instrument.Type: GrantFiled: November 13, 2020Date of Patent: April 16, 2024Assignee: Auris Health, Inc.Inventors: Hedyeh Rafii-Tari, Prasanth Jeevan, Douglas T. Boyd, Melissa A. Teran, Alexander James Sheehy, Nicolas E. Robert, Miroslav Drahos, Jeffery D. Howard, Andrew Esbenshade Zeldis, René Ango Mambembe
-
Patent number: 11950898Abstract: Provided are systems and methods for displaying an estimated location of an instrument. In one aspect, the method includes determining a first location of the instrument based on first location data generated by a set of one or more location sensors for the instrument, the first location data corresponding to a first time period, and after the first time period, receiving a user command to move the instrument during a second time period. The method also includes estimating a second location of the instrument based on the first location and the received user command, the estimated second location corresponding to the second time period, and confirming the estimated second location based on second location data generated by the set of location sensors. The method further includes causing the estimated second location to be displayed prior to the confirmation of the estimated second location.Type: GrantFiled: November 6, 2020Date of Patent: April 9, 2024Assignee: Auris Health, Inc.Inventors: Ritwik Ummalaneni, Prasanth Jeevan
-
Patent number: 11911011Abstract: An object sizing system sizes an object positioned within a patient. The object sizing system identifies a presence of the object. The object sizing system navigates an elongate body of an instrument to a position proximal to the object within the patient. An imaging sensor coupled to the elongate body captures one or more sequential images of the object. The instrument may be further moved around within the patient to capture additional images at different positions/orientations relative to the object. The object sizing system also acquires robot data and/or EM data associated with the positions and orientations of the elongate body. The object sizing system analyzes the captured images based on the acquired robot data to estimate a size of the object.Type: GrantFiled: May 2, 2022Date of Patent: February 27, 2024Assignee: Auris Health, Inc.Inventors: David S. Mintz, David M. Schummers, Prasanth Jeevan, Hedyeh Rafii-Tari, Ritwik Ummalaneni
-
Patent number: 11864850Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.Type: GrantFiled: January 22, 2021Date of Patent: January 9, 2024Assignee: Auris Health, Inc.Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
-
Publication number: 20230390002Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.Type: ApplicationFiled: June 6, 2023Publication date: December 7, 2023Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
-
Patent number: 11832889Abstract: Systems and methods for electromagnetic field generator alignment are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate, when positioned in a working volume of the EM field, one or more EM sensor signals based on detection of the EM field, the EM sensor configured for placement on a patient. The system may also include a processor and a memory storing computer-executable instructions to cause the processor to: determine a position of the EM sensor with respect to the field generator based on the one or more EM sensor signals, encode a representation of the position of the EM sensor with respect to the working volume of the EM field, and provide the encoded representation of the position to a display configured to render encoded data.Type: GrantFiled: June 25, 2018Date of Patent: December 5, 2023Assignee: Auris Health, Inc.Inventors: David Burdick Berman, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
-
Patent number: 11712311Abstract: Provided are systems and methods for path-based navigation of tubular networks. In one aspect, the method includes receiving location data from at least one of a set of location sensors and a set of robot command inputs, the location data being indicative of a location of an instrument configured to be driven through a luminal network. The method also includes determining a first estimate of the location of the instrument at a first time based on the location data, determining a second estimate of the location of the instrument at the first time based on the path, and determining the location of the instrument at the first time based on the first estimate and the second estimate.Type: GrantFiled: January 22, 2021Date of Patent: August 1, 2023Assignee: Auris Health, Inc.Inventors: Subashini Srinivasan, Hedyeh Rafii-Tari, Ritwik Ummalaneni, David Paul Noonan, Prasanth Jeevan
-
Patent number: 11712173Abstract: Provided are systems and methods for displaying an estimated location of an instrument. In one aspect, the method includes determining a first location of the instrument based on first location data generated by a set of one or more location sensors for the instrument, the first location data corresponding to a first time period, and after the first time period, receiving a user command to move the instrument during a second time period. The method also includes estimating a second location of the instrument based on the first location and the received user command, the estimated second location corresponding to the second time period, and confirming the estimated second location based on second location data generated by the set of location sensors. The method further includes causing the estimated second location to be displayed prior to the confirmation of the estimated second location.Type: GrantFiled: November 6, 2020Date of Patent: August 1, 2023Assignee: Auris Health, Inc.Inventors: Ritwik Ummalaneni, Prasanth Jeevan
-
Publication number: 20230049292Abstract: A robotic system includes an instrument including an elongate shaft, a robotic manipulator configured to manipulate the elongate shaft of the instrument, and control circuitry communicatively coupled to the robotic manipulator and configured to determine a first estimated position of at least a portion of the elongate shaft of the instrument based at least in part on robotic command data, determine a second estimated position of the at least a portion of the elongate shaft of the instrument based at least in part on position sensor data, compare the first estimated position and the second estimated position, and generate a third estimated position based at least in part on the comparison of the first estimated position to the second estimated position.Type: ApplicationFiled: November 1, 2022Publication date: February 16, 2023Inventors: Hedyeh RAFII-TARI, Ritwik UMMALANENI, Simon Wei Quan LIM, Prasanth JEEVAN
-
Publication number: 20230042618Abstract: Systems and methods for electromagnetic distortion detection are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate an EM sensor signal in response to detection of the EM field. The system may also include a processor configured to calculate a baseline value of a metric indicative of a position of the EM sensor at a first time and calculate an updated value of the metric during a time period after the first time. The processor may be further configured to determine that a difference between the updated value and the baseline value is greater than a threshold value and determine that the EM field has been distorted in response to the difference being greater than the threshold value.Type: ApplicationFiled: July 25, 2022Publication date: February 9, 2023Applicant: Auris Health, Inc.Inventors: David Burdick Berman, Christopher K. Sramek, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
-
Publication number: 20230012778Abstract: Methods and apparatuses provide improved navigation through tubular networks such as lung airways by providing improved estimation of location and orientation information of a medical instrument (e.g., an endoscope) within the tubular network. Various input data such as image data, EM data, and robot data are used by different algorithms to estimate the state of the medical instrument, and the state information is used to locate a specific site within a tubular network and/or to determine navigation information for what positions/orientations the medical instrument should travel through to arrive at the specific site. Probability distributions together with confidence values are generated corresponding to different algorithms are used to determine the medical instrument's estimated state.Type: ApplicationFiled: July 27, 2022Publication date: January 19, 2023Applicant: Auris Health, Inc.Inventors: David S. Mintz, Atiyeh Ghoreyshi, Prasanth Jeevan, Yiliang Xu, Gehua Yang, Matthew Joseph Leotta, Charles V. Stewart
-
Patent number: 11553967Abstract: Systems and methods for electromagnetic field generator alignment are disclosed. In one aspect, the system includes an electromagnetic (EM) sensor configured to generate, when positioned in a working volume of the EM field, one or more EM sensor signals based on detection of the EM field, the EM sensor configured for placement on a patient. The system may also include a processor and a memory storing computer-executable instructions to cause the processor to: determine a position of the EM sensor with respect to the field generator based on the one or more EM sensor signals, encode a representation of the position of the EM sensor with respect to the working volume of the EM field, and provide the encoded representation of the position to a display configured to render encoded data.Type: GrantFiled: June 25, 2018Date of Patent: January 17, 2023Assignee: Auris Health, Inc.Inventors: David Burdick Berman, Hedyeh Rafii-Tari, Prasanth Jeevan, Nicolas E. Robert
-
Patent number: 11510736Abstract: Systems and methods for estimating instrument location are described. The methods and systems can obtain a first motion estimate based on robotic data and a second motion estimate based on position sensor data. The methods and systems can determine a motion estimate disparity based on a comparison of the first and second motion estimates. Based on the motion estimate disparity, the methods and systems can update a weighting factor for a location derivable from the robotic data or a weighting factor for a location derivable from the position sensor data. Based on the updated weighting factor, the methods and systems can determine a location/position estimate for the instrument. The methods and systems can provide increased accuracy for a position estimate in cases where the instrument experiences buckling or hysteresis.Type: GrantFiled: December 13, 2018Date of Patent: November 29, 2022Assignee: Auris Health, Inc.Inventors: Hedyeh Rafii-Tari, Ritwik Ummalaneni, Simon Wei Quan Lim, Prasanth Jeevan
-
Publication number: 20220330808Abstract: An object sizing system sizes an object positioned within a patient. The object sizing system identifies a presence of the object. The object sizing system navigates an elongate body of an instrument to a position proximal to the object within the patient. An imaging sensor coupled to the elongate body captures one or more sequential images of the object. The instrument may be further moved around within the patient to capture additional images at different positions/orientations relative to the object. The object sizing system also acquires robot data and/or EM data associated with the positions and orientations of the elongate body. The object sizing system analyzes the captured images based on the acquired robot data to estimate a size of the object.Type: ApplicationFiled: May 2, 2022Publication date: October 20, 2022Inventors: David S. Mintz, David M. Schummers, Prasanth Jeevan, Hedyeh Rafii-Tari, Ritwik Ummalaneni