Patents by Inventor Prashant P. Patel

Prashant P. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240304828
    Abstract: The invention provides noble metal-free electro-catalyst compositions for use in acidic media, e.g., acidic electrolyte. The noble metal-free electro-catalyst compositions include non-noble metal absent of noble metal. The non-noble metal is non-noble metal oxide, and typically in the form of any configuration of a solid or hollow nano-material, e.g., nano-particles, a nanocrystalline thin film, nanorods, nanoshells, nanoflakes, nanotubes, nanoplates, nanospheres and nanowhiskers or combinations of myriad nanoscale architecture embodiments. Optionally, the noble metal-free electro-catalyst compositions include dopant, such as, but not limited to halogen. Acidic media includes oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, and direct methanol fuel cells and oxygen evolution reaction (OER) in PEM-based water electrolysis and metal air batteries, and hydrogen generation from solar energy and electricity-driven water splitting.
    Type: Application
    Filed: May 3, 2024
    Publication date: September 12, 2024
    Inventors: Prashant N. Kumta, Prasad P. Patel, Moni K. Datta, Oleg Velikokhatnyi, Prashanth J. Hanumantha, Ramalinga Kuruba, Shrinath Ghadge
  • Patent number: 10914201
    Abstract: An example system includes an engine and an exhaust passage fluidly coupled to the engine. A waste heat recovery system includes a boiler operatively coupled to the exhaust passage, and a condenser fluidly coupled to the boiler. An integrated cooling system includes an engine cooling circuit, a waste heat recovery cooling circuit, a waste heat recovery bypass valve, and a controller. The waste heat recovery bypass valve is operatively coupled to the exhaust passage upstream of the boiler, and is selectively controllable so as to direct at least a portion of the exhaust gas through an exhaust bypass passage so as to bypass the boiler. The controller is in operative communication with the waste heat recovery bypass valve. The controller is structured to determine a cooling demand of the engine, and to control a valve position of the waste heat recovery bypass valve based on the cooling demand.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: February 9, 2021
    Assignee: Cummins Inc.
    Inventors: Prashant P. Patel, Christopher R. Nelson, Prashaanth Ravindran
  • Patent number: 10724471
    Abstract: An engine waste heat recovery (WHR) system includes a turbocharger WHR portion, an exhaust WHR portion, an expander in the exhaust WHR portion, a condenser, valves, and a controller. The expander receives a working fluid in a superheated form and converts thermal energy in the working fluid into mechanical energy or electrical energy. The condenser condenses the working fluid for recirculation through the engine WHR system. The recuperator is fluidly coupled between the expander and the condenser to allow the working fluid to flow from the expander to the condenser. The recuperator transfers thermal energy to a flow of the working fluid from the turbocharger WHR portion. Each valve is fluidly coupled to one of the turbocharger WHR portion and the exhaust WHR portion. The controller is electrically coupled to the valves, and the controller selectively controls the valves to selectively circulate the working fluid through the engine WHR system.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 28, 2020
    Assignee: Cummins Inc.
    Inventors: Prashant P. Patel, Prashaanth Ravindran, Christopher R. Nelson, Leon A. LaPointe
  • Publication number: 20190003419
    Abstract: An engine waste heat recovery (WHR) system includes a turbocharger WHR portion, an exhaust WHR portion, an expander in the exhaust WHR portion, a condenser, valves, and a controller. The expander receives a working fluid in a superheated form and converts thermal energy in the working fluid into mechanical energy or electrical energy. The condenser condenses the working fluid for recirculation through the engine WHR system. The recuperator is fluidly coupled between the expander and the condenser to allow the working fluid to flow from the expander to the condenser. The recuperator transfers thermal energy to a flow of the working fluid from the turbocharger WHR portion. Each valve is fluidly coupled to one of the turbocharger WHR portion and the exhaust WHR portion. The controller is electrically coupled to the valves, and the controller selectively controls the valves to selectively circulate the working fluid through the engine WHR system.
    Type: Application
    Filed: December 21, 2015
    Publication date: January 3, 2019
    Applicant: CUMMINS INC.
    Inventors: Prashant P. Patel, Prashaanth Ravindran, Christopher R. Nelson, Leon A. Lapointe
  • Publication number: 20180355765
    Abstract: An example system includes an engine and an exhaust passage fluidly coupled to the engine. A waste heat recovery system includes a boiler operatively coupled to the exhaust passage, and a condenser fluidly coupled to the boiler. An integrated cooling system includes an engine cooling circuit, a waste heat recovery cooling circuit, a waste heat recovery bypass valve, and a controller. The waste heat recovery bypass valve is operatively coupled to the exhaust passage upstream of the boiler, and is selectively controllable so as to direct at least a portion of the exhaust gas through an exhaust bypass passage so as to bypass the boiler. The controller is in operative communication with the waste heat recovery bypass valve. The controller is structured to determine a cooling demand of the engine, and to control a valve position of the waste heat recovery bypass valve based on the cooling demand.
    Type: Application
    Filed: December 18, 2015
    Publication date: December 13, 2018
    Applicant: CUMMINS INC.
    Inventors: Prashant P. Patel, Chirstopher R. Nelson, Prashaanth Ravindran