Patents by Inventor Prashi Jain

Prashi Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240417378
    Abstract: G protein-coupled receptor (GPCR) regulators and methods for their use are provided herein. The GPCR regulators described herein are useful in treating and/or preventing conditions or diseases associated with a GPCR, including ageing, cancer, cardiovascular disorders, hematologic disorders, infectious diseases, inflammatory diseases, metabolic diseases, neurodegenerative disorders, respiratory diseases, or urological disorders. Also provided are methods of regulating a G protein-coupled receptor in a cell using the compounds and compositions described herein.
    Type: Application
    Filed: October 11, 2022
    Publication date: December 19, 2024
    Applicant: Baylor College of Medicine
    Inventors: Damian Winston Young, Srinivas Chamakuri, Conrad Santini, Martin M. Matzuk, Kevin A. Tran, Prashi Jain, Shiva Krishna Reddy Guduru, Idris O. Raji, Errol L.G. Samuel, Kevin R. MacKenzie
  • Publication number: 20230293587
    Abstract: The present disclosure concerns methods and compositions related to cancer treatment comprising targeting of SRC-3 in immune cells, including T cells such as T regulatory cells. The targeting of SRC-3 in T regulatory cells in particular is effective to eradicate tumors in mammals. In specific cases, the T regulatory cells are subjected to CRISPR ex vivo to produce cells suitable for adoptive cell transfer. In some cases, one or more agents that target SRC-3 are also administered to the individual and/or are exposed to the cells prior to administration.
    Type: Application
    Filed: April 14, 2023
    Publication date: September 21, 2023
    Inventors: Bert W. O'Malley, Sang Jun Han, David M. Lonard, Bryan Nikolai, Prashi Jain, Yosef Gilad, Clifford Dacso
  • Patent number: 11633429
    Abstract: The present disclosure concerns methods and compositions related to cancer treatment comprising targeting of SRC-3 in immune cells, including T cells such as T regulatory cells. The targeting of SRC-3 in T regulatory cells in particular is effective to eradicate tumors in mammals. In specific cases, the T regulatory cells are subjected to CRISPR ex vivo to produce cells suitable for adoptive cell transfer. In some cases, one or more agents that target SRC-3 are also administered to the individual and/or are exposed to the cells prior to administration.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: April 25, 2023
    Assignee: Baylor College of Medicine
    Inventors: Bert W. O'Malley, Sang Jun Han, David M. Lonard, Bryan Nikolai, Prashi Jain, Yosef Gilad, Clifford Dacso
  • Patent number: 11633428
    Abstract: The present disclosure concerns methods and compositions related to cancer treatment comprising targeting of SRC-3 in immune cells, including T cells such as T regulatory cells. The targeting of SRC-3 in T regulatory cells in particular is effective to eradicate tumors in mammals. In specific cases, the T regulatory cells are subjected to CRISPR ex vivo to produce cells suitable for adoptive cell transfer. In some cases, one or more agents that target SRC-3 are also administered to the individual and/or are exposed to the cells prior to administration.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: April 25, 2023
    Assignee: Baylor College of Medicine
    Inventors: Bert W. O'Malley, Sang Jun Han, David M. Lonard, Bryan Nikolai, Prashi Jain, Yosef Gilad, Clifford Dacso
  • Patent number: 11497772
    Abstract: The present disclosure concerns methods and compositions related to cancer treatment comprising targeting of SRC-3 in immune cells, including T cells such as T regulatory cells. The targeting of SRC-3 in T regulatory cells in particular is effective to eradicate tumors in mammals. In specific cases, the T regulatory cells are subjected to CRISPR ex vivo to produce cells suitable for adoptive cell transfer. In some cases, one or more agents that target SRC-3 are also administered to the individual and/or are exposed to the cells prior to administration.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: November 15, 2022
    Assignee: Baylor College of Medicine
    Inventors: Bert W. O'Malley, Sang Jun Han, David M. Lonard, Bryan Nikolai, Prashi Jain, Yosef Gilad, Clifford Dacso
  • Publication number: 20220160772
    Abstract: The present disclosure concerns methods and compositions related to cancer treatment comprising targeting of SRC-3 in immune cells, including T cells such as T regulatory cells. The targeting of SRC-3 in T regulatory cells in particular is effective to eradicate tumors in mammals. In specific cases, the T regulatory cells are subjected to CRISPR ex vivo to produce cells suitable for adoptive cell transfer. In some cases, one or more agents that target SRC-3 are also administered to the individual and/or are exposed to the cells prior to administration.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 26, 2022
    Inventors: Bert W. O'Malley, Sang Jun Han, David M. Lonard, Bryan Nikolai, Prashi Jain, Yosef Gilad, Clifford Dacso
  • Publication number: 20220160773
    Abstract: The present disclosure concerns methods and compositions related to cancer treatment comprising targeting of SRC-3 in immune cells, including T cells such as T regulatory cells. The targeting of SRC-3 in T regulatory cells in particular is effective to eradicate tumors in mammals. In specific cases, the T regulatory cells are subjected to CRISPR ex vivo to produce cells suitable for adoptive cell transfer. In some cases, one or more agents that target SRC-3 are also administered to the individual and/or are exposed to the cells prior to administration.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 26, 2022
    Inventors: Bert W. O'Malley, Sang Jun Han, David M. Lonard, Bryan Nikolai, Prashi Jain, Yosef Gilad, Clifford Dacso
  • Publication number: 20220125842
    Abstract: The present disclosure concerns methods and compositions related to cancer treatment comprising targeting of SRC-3 in immune cells, including T cells such as T regulatory cells. The targeting of SRC-3 in T regulatory cells in particular is effective to eradicate tumors in mammals. In specific cases, the T regulatory cells are subjected to CRISPR ex vivo to produce cells suitable for adoptive cell transfer. In some cases, one or more agents that target SRC-3 are also administered to the individual and/or are exposed to the cells prior to administration.
    Type: Application
    Filed: August 27, 2021
    Publication date: April 28, 2022
    Inventors: Bert W. O'Malley, Sang Jun Han, David M. Lonard, Bryan Nikolai, Prashi Jain, Yosef Gilad, Clifford Dacso
  • Publication number: 20210040074
    Abstract: Disclosed are compounds of formulas (I) and (III) for treating or preventing a disease or disorder responsive to activation of a D1 dopamine receptor agonist in a mammal in need thereof, wherein m, n, R1-R6, and R11-R13 are as defined herein. Examples of such disease or disorder include Alzheimer's Disease, schizophrenia, Parkinson's disease, a dyskinesia, and Huntington's disease.
    Type: Application
    Filed: March 6, 2019
    Publication date: February 11, 2021
    Applicants: The United States of America,as represented by the Secretary,Department of Health and Human Services, University of Kansas, The University of North Carolina at Chapel Hill
    Inventors: David R. Sibley, Kathryn D. Luderman, Jennie L. Conroy, R. Benjamin Free, Prashi Jain, Noel T. Southall, Marc Ferrer, Jeffrey Aubé, Kevin Frankowski