Patents by Inventor Pratik KOIRALA

Pratik KOIRALA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021725
    Abstract: Gallium nitride (GaN) transistors with lateral depletion for integrated circuit technology are described. In an example, an integrated circuit structure includes a layer including gallium and nitrogen above a silicon substrate, a gate structure over the layer including gallium and nitrogen, a source region on a first side of the gate structure, a drain region on a second side of the gate structure, and a source field plate laterally between the gate structure and the drain region, the source field plate laterally separated from the gate structure.
    Type: Application
    Filed: December 24, 2022
    Publication date: January 18, 2024
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Samuel James BADER, Pratik KOIRALA, Michael S. BEUMER, Heli Chetanbhai VORA, Ahmad ZUBAIR
  • Publication number: 20230090106
    Abstract: Gallium nitride (GaN) layer transfer for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon. A first layer including gallium and nitrogen is over a first region of the substrate, the first layer having a gallium-polar orientation with a top crystal plane consisting of a gallium face. A second layer including gallium and nitrogen is over a second region of the substrate, the second layer having a nitrogen-polar orientation with a top crystal plane consisting of a nitrogen face.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA, Paul B. FISCHER, Walid M. HAFEZ, Nicole K. THOMAS, Nityan NAIR, Pratik KOIRALA, Paul NORDEEN, Tushar TALUKDAR, Thomas HOFF, Thoe MICHAELOS
  • Publication number: 20230081460
    Abstract: Gallium nitride (GaN) integrated circuit technology with optical communication is described. In an example, an integrated circuit structure includes a layer or substrate having a first region and a second region, the layer or substrate including gallium and nitrogen. A GaN-based device is in or on the first region of the layer or substrate. A CMOS-based device is over the second region of the layer or substrate. An interconnect structure is over the GaN-based device and over the CMOS-based device, the interconnect structure including conductive interconnects and vias in a dielectric layer. A photonics waveguide is over the interconnect structure, the photonics waveguide including silicon, and the photonics waveguide bonded to the dielectric layer of the interconnect structure.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Nicole K. THOMAS, Pratik KOIRALA, Nityan NAIR, Paul B. FISCHER
  • Publication number: 20230066336
    Abstract: Gallium nitride (GaN) epitaxy on patterned substrates for integrated circuit technology is described. In an example, an integrated circuit structure includes a material layer including gallium and nitrogen, the material layer having a first side and a second side opposite the first side. A plurality of fins is on the first side of the material layer, the plurality of fins including silicon. A device layer is on the second side of the material layer, the device layer including one or more GaN-based devices.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Pratik KOIRALA, Paul NORDEEN, Tushar TALUKDAR, Kimin JUN, Thomas HOFF, Han Wui THEN, Nicole K. THOMAS, Marko RADOSAVLJEVIC, Paul B. FISCHER
  • Publication number: 20230069054
    Abstract: Gallium nitride (GaN) integrated circuit technology with multi-layer epitaxy and layer transfer is described. In an example, an integrated circuit structure includes a first channel structure including a plurality of alternating first channel layers and second channel layers, the first channel layers including gallium and nitrogen, and the second layers including gallium, aluminum and nitrogen. A second channel structure is bonded to the first channel structure. The second channel structure includes a plurality of alternating third channel layers and fourth channel layers, the third channel layers including gallium and nitrogen, and the fourth layers including gallium, aluminum and nitrogen.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 2, 2023
    Inventors: Souvik GHOSH, Han Wui THEN, Pratik KOIRALA, Tushar TALUKDAR, Paul NORDEEN, Nityan NAIR, Marko RADOSAVLJEVIC, Ibrahim BAN, Kimin JUN, Jay GUPTA, Paul B. FISCHER, Nicole K. THOMAS, Thomas HOFF, Samuel James BADER
  • Publication number: 20230062922
    Abstract: Gallium nitride (GaN) selective epitaxial windows for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon, the substrate having a top surface. A first trench is in the substrate, the first trench having a first width and a first height. A second trench is in the substrate, the second trench having a second width and a second height. The second width is greater than the first width, and the second height is greater than the first height. A first island is in the first trench, the first island including gallium and nitrogen and having first corner facets at least partially below the top surface of the substrate. A second island is in the second trench, the second island including gallium and nitrogen and having second corner facets at least partially below the top surface of the substrate.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Samuel James BADER, Pratik KOIRALA, Nicole K. THOMAS, Han Wui THEN, Marko RADOSAVLJEVIC
  • Publication number: 20230054719
    Abstract: Gallium nitride (GaN) layer transfer and regrowth for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate. An insulator layer is over the substrate. A device layer is directly on the insulator layer. The device layer has a thickness of less than approximately 500 nanometers.
    Type: Application
    Filed: August 20, 2021
    Publication date: February 23, 2023
    Inventors: Pratik KOIRALA, Souvik GHOSH, Paul NORDEEN, Tushar TALUKDAR, Thomas HOFF, Ibrahim BAN, Kimin JUN, Samuel James BADER, Marko RADOSAVLJEVIC, Nicole K. THOMAS, Paul B. FISCHER, Han Wui THEN
  • Publication number: 20230047449
    Abstract: Gallium nitride (GaN) integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon, the substrate having a top surface. A first trench is in the substrate, the first trench having a first width. A second trench is in the substrate, the second trench having a second width less than the first width. A first island is in the first trench, the first island including gallium and nitrogen and having first corner facets below the top surface of the substrate. A second island is in the second trench, the second island including gallium and nitrogen and having second corner facets below the top surface of the substrate.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Nicole K. THOMAS, Samuel James BADER, Marko RADOSAVLJEVIC, Han Wui THEN, Pratik KOIRALA, Nityan NAIR
  • Publication number: 20220102339
    Abstract: Gallium nitride (GaN) three-dimensional integrated circuit technology is described. In an example, an integrated circuit structure includes a layer including gallium and nitrogen, a plurality of gate structures over the layer including gallium and nitrogen, a source region on a first side of the plurality of gate structures, a drain region on a second side of the plurality of gate structures, the second side opposite the first side, and a drain field plate above the drain region wherein the drain field plate is coupled to the source region. In another example, a semiconductor package includes a package substrate. A first integrated circuit (IC) die is coupled to the package substrate. The first IC die includes a GaN device layer and a Si-based CMOS layer.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Pratik KOIRALA, Nicole K. THOMAS, Paul B. FISCHER, Adel A. ELSHERBINI, Tushar TALUKDAR, Johanna M. SWAN, Wilfred GOMES, Robert S. CHAU, Beomseok CHOI
  • Publication number: 20220102344
    Abstract: Gallium nitride (GaN) three-dimensional integrated circuit technology is described. In an example, an integrated circuit structure includes a layer including gallium and nitrogen, a plurality of gate structures over the layer including gallium and nitrogen, a source region on a first side of the plurality of gate structures, a drain region on a second side of the plurality of gate structures, the second side opposite the first side, and a drain field plate above the drain region wherein the drain field plate is coupled to the source region. In another example, a semiconductor package includes a package substrate. A first integrated circuit (IC) die is coupled to the package substrate. The first IC die includes a GaN device layer and a Si-based CMOS layer.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Pratik KOIRALA, Nicole K. THOMAS, Paul B. FISCHER, Adel A. ELSHERBINI, Tushar TALUKDAR, Johanna M. SWAN, Wilfred GOMES, Robert S. CHAU, Beomseok CHOI
  • Publication number: 20220093683
    Abstract: Embodiments disclosed herein include resonators and methods of forming such resonators. In an embodiment a resonator comprises a substrate, where a cavity is disposed into a surface of the substrate, and a piezoelectric film suspended over the cavity. In an embodiment, the piezoelectric film has a first surface and a second surface opposite from the first surface, and the piezoelectric film is single crystalline and has a thickness that is 0.5 ?m or less. In an embodiment a first electrode is over the first surface of the piezoelectric film, and a second electrode is over the second surface of the piezoelectric film.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 24, 2022
    Inventors: Han Wui THEN, Ibrahim BAN, Paul B. FISCHER, Kimin JUN, Paul NORDEEN, Pratik KOIRALA, Tushar TALUKDAR