Patents by Inventor Pratima Addepalli

Pratima Addepalli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190217716
    Abstract: A method includes controlling charging a battery pack of an electrified vehicle, via a control system of the electrified vehicle, based on climate conditions, traffic conditions, and learned driving habits of a driver of the electrified vehicle. The control system is configured to create a smart charging schedule for either adding or not adding an additional charge to the battery pack in anticipation of an expected upcoming drive cycle.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 18, 2019
    Inventors: Xiao Guang Yang, James Matthew Marcicki, Pratima Addepalli, Devang Bhalchandra Dave, Jianbo Lu
  • Publication number: 20190217721
    Abstract: A method controlling a battery management system is provided. The method may include commanding by a controller a heat exchanger of a vehicle to pre-cool a traction battery of the vehicle key-off responsive to the vehicle being within a predetermined range of a predicted parking location, a current temperature of the traction battery being less than a temperature threshold, and a predicted parked temperature for the traction battery being greater than the temperature threshold.
    Type: Application
    Filed: January 15, 2018
    Publication date: July 18, 2019
    Inventors: James Matthew MARCICKI, Devang Bhalchandra DAVE, Xiao Guang YANG, Pratima ADDEPALLI
  • Patent number: 9853177
    Abstract: A photovoltaic device includes a substrate, a transparent conductive oxide, an n-type window layer, a p-type absorber layer and an electron reflector layer. The electron reflector layer may include zinc telluride doped with copper telluride, zinc telluride alloyed with copper telluride, or a bilayer of multiple layers containing zinc, copper, cadmium and tellurium in various compositions. A process for manufacturing a photovoltaic device includes forming a layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process includes forming an electron reflector layer over a p-type absorber layer.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: December 26, 2017
    Assignee: First Solar, Inc.
    Inventors: San Yu, Veluchamy Palaniappagounder, Pratima Addepalli, Imran Khan
  • Patent number: 9406829
    Abstract: A method to improve operation of a CdTe-based photovoltaic device is disclosed, the method comprising the steps of depositing a semiconductor absorber layer adjacent to a substrate, depositing a semiconductor buffer layer adjacent to the semiconductor layer, and annealing at least one of the semiconductor absorber layer and the semiconductor buffer layer with one of a laser and a flash lamp.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 2, 2016
    Assignee: First Solar, Inc.
    Inventors: Pratima Addepalli, Benyamin Buller, Markus Gloeckler, Akhlesh Gupta, David Hwang, Andrei Los, Rick Powell, Rui Shao, Gang Xiong, Ming Lun Yu, San Yu, Zhibo Zhao
  • Publication number: 20160126397
    Abstract: A photovoltaic device includes a substrate, a transparent conductive oxide, an n-type window layer, a p-type absorber layer and an electron reflector layer. The electron reflector layer may include zinc telluride doped with copper telluride, zinc telluride alloyed with copper telluride, or a bilayer of multiple layers containing zinc, copper, cadmium and tellurium in various compositions. A process for manufacturing a photovoltaic device includes forming a layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process includes forming an electron reflector layer over a p-type absorber layer.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Applicant: First Solar, Inc.
    Inventors: San Yu, Veluchamy Palaniappagounder, Pratima Addepalli, Imran Khan
  • Patent number: 9269849
    Abstract: A photovoltaic device includes a substrate, a transparent conductive oxide, an n-type window layer, a p-type absorber layer and an electron reflector layer. The electron reflector layer may include zinc telluride doped with copper telluride, zinc telluride alloyed with copper telluride, or a bilayer of multiple layers containing zinc, copper, cadmium and tellurium in various compositions. A process for manufacturing a photovoltaic device includes forming a layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process includes forming an electron reflector layer over a p-type absorber layer.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: February 23, 2016
    Assignee: First Solar, Inc.
    Inventors: San Yu, Veluchamy Palaniappagounder, Pratima Addepalli, Imran Khan
  • Publication number: 20150004743
    Abstract: A method to improve operation of a CdTe-based photovoltaic device is disclosed, the method comprising the steps of depositing a semiconductor absorber layer adjacent to a substrate, depositing a semiconductor buffer layer adjacent to the semiconductor layer, and annealing at least one of the semiconductor absorber layer and the semiconductor buffer layer with one of a laser and a flash lamp.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Pratima Addepalli, Benyamin Buller, Markus Gloeckler, Akhlesh Gupta, David Hwang, Andrei Los, Rick Powell, Rui Shao, Gang Xiong, Ming Lun Yu, San Yu, Zhibo Zhao
  • Publication number: 20140284750
    Abstract: A photovoltaic device includes a substrate, a transparent conductive oxide, an n-type window layer, a p-type absorber layer and an electron reflector layer. The electron reflector layer may include zinc telluride doped with copper telluride, zinc telluride alloyed with copper telluride, or a bilayer of multiple layers containing zinc, copper, cadmium and tellurium in various compositions. A process for manufacturing a photovoltaic device includes forming a layer over a substrate by at least one of sputtering, evaporation deposition, CVD, chemical bath deposition process, and vapor transport deposition process. The process includes forming an electron reflector layer over a p-type absorber layer.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Applicant: FIRST SOLAR, INC.
    Inventors: San Yu, Veluchamy Palaniappagounder, Pratima Addepalli, Imran Khan
  • Patent number: 7997087
    Abstract: A structure, system and method for controlling a temperature of a heat generating device in a solid medium, wherein heat is extracted from the medium into at least one heat extraction device, the heat extraction device dissipates heat into an environment apart from the medium by a heat sink thermally coupled to the heat extraction device; and heat from the medium is dissipated into the heat sink by a first thermal interface material thermally coupling the heat sink to the medium.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: August 16, 2011
    Inventors: Rama Venkatasubramanian, Randall G. Alley, Pratima Addepalli, Anil J. Reddy, Edward P. Siivola, Brooks C. O'Quinn, Kip D. Coonley, John Posthill, Thomas Colpitts
  • Publication number: 20110132450
    Abstract: A method of manufacturing a photovoltaic module may include depositing a semiconductor material adjacent to a substrate; and depositing a back contact material adjacent to the semiconductor material, where depositing the back contact material may include directing a feed gas including hydrogen toward the substrate.
    Type: Application
    Filed: November 8, 2010
    Publication date: June 9, 2011
    Applicant: First Solar, Inc.
    Inventors: Pratima Addepalli, Sreenivas Jayaraman
  • Patent number: 7838760
    Abstract: A thermoelectric device having at least one unipolar couple element (22) including two legs (22a) of a same electrical conductivity type. A first-temperature stage (24) is connected to one of the two legs. A second-temperature stage (28) is connected across the legs of the at least one unipolar couple element. A third-temperature stage (30) is connected to the other of the two legs. Methods for cooling an object and for thermoelectric power conversion utilize the at least one unipolar couple element to respectively cool an object and produce electrical power.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: November 23, 2010
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Rama Venkatasubramanian, Kip D. Coonley, Edward P. Siivola, Michael Puchan, Randall G. Alley, Pratima Addepalli, Brooks C. O'Quinn, Thomas Colpitts, Mary Napier
  • Publication number: 20100257871
    Abstract: A thermoelectric device having at least one thermoelectric unit including at least one thermoelectric pair of n-type and p-type thermoelements, a first header coupled to one side of the thermoelectric pair, and a second header coupled to a second side of the thermoelectric pair. The thermoelectric pair has a thermal conduction channel area smaller than an area of the first header or the second header such that the thermal conduction area is a fraction of the area of the first header or the second header.
    Type: Application
    Filed: December 18, 2006
    Publication date: October 14, 2010
    Inventors: Rama Venkatasubramanian, Brooks C. O'Quinn, Edward P. Siivola, Kip D. Coonley, Pratima Addepalli, Randall G. Alley, John Posthill, Thomas Colpitts, Anil J. Reddy, James Christopher Caylor, Peter Thomas
  • Patent number: 7679203
    Abstract: A method of forming a thermoelectric device may include forming a plurality of islands of thermoelectric material on a deposition substrate. The plurality of islands of thermoelectric material may be bonded to a header substrate so that the plurality of islands are between the deposition substrate and the header substrate. More particularly, the islands of thermoelectric material may be epitaxial islands of thermoelectric material having crystal structures aligned with a crystal structure of the deposition substrate. Related structures are also discussed.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: March 16, 2010
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Jayesh Bharathan, David A. Koester, Randall G. Alley, Rama Venkatasubramanian, Pratima Addepalli, Bing Shen, Cynthia Watkins
  • Publication number: 20090282852
    Abstract: A structure, system and method for controlling a temperature of a heat generating device in a solid medium, wherein heat is extracted from the medium into at least one heat extraction device, the heat extraction device dissipates heat into an environment apart from the medium by a heat sink thermally coupled to the heat extraction device; and heat from the medium is dissipated into the heat sink by a first thermal interface material thermally coupling the heat sink to the medium.
    Type: Application
    Filed: March 13, 2009
    Publication date: November 19, 2009
    Inventors: Rama Venkatasubramanian, Randall G. Alley, Pratima Addepalli, Anil J-Reddy, Edward P. Siivola, Brooks C. O'Quinn, Kip D. Coonley, John Posthill, Thomas Colpitts
  • Patent number: 7523617
    Abstract: A structure, system and method for controlling a temperature of a heat generating device in a solid medium, wherein heat is extracted from the medium into at least one heat extraction device, the heat extraction device dissipates heat into an environment apart from the medium by a heat sink thermally coupled to the heat extraction device; and heat from the medium is dissipated into the heat sink by a first thermal interface material thermally coupling the heat sink to the medium.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: April 28, 2009
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Rama Venkatasubramanian, Randall G. Alley, Pratima Addepalli, Anil J. Reddy, Edward P. Siivola, Brooks C. O'Quinn, Kip D. Coonley, John Posthill, Thomas Colpitts
  • Publication number: 20070215194
    Abstract: A method of forming a thermoelectric device may include forming a plurality of islands of thermoelectric material on a deposition substrate. The plurality of islands of thermoelectric material may be bonded to a header substrate so that the plurality of islands are between the deposition substrate and the header substrate. More particularly, the islands of thermoelectric material may be epitaxial islands of thermoelectric material having crystal structures aligned with a crystal structure of the deposition substrate. Related structures are also discussed.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 20, 2007
    Inventors: Jayesh Bharathan, David Koester, Randall Alley, Rama Venkatasubramanian, Pratima Addepalli, Bing Shen, Cynthia Watkins
  • Publication number: 20060225773
    Abstract: A thermoelectric device having at least one unipolar couple element (22) including two legs (22a) of a same electrical conductivity type. A first-temperature stage (24) is connected to one of the two legs. A second-temperature stage (28) is connected across the legs of the at least one unipolar couple element. A third-temperature stage (30) is connected to the other of the two legs. Methods for cooling an object and for thermoelectric power conversion utilize the at least one unipolar couple element to respectively cool an object and produce electrical power.
    Type: Application
    Filed: November 25, 2003
    Publication date: October 12, 2006
    Inventors: Rama Venkatasubramanian, Kip Coonley, Edward Siivola, Michael Puchan, Randall Alley, Pratima Addepalli, Brooks O'Quinn, Thomas Colpitts, Mary Napier
  • Publication number: 20060086118
    Abstract: A structure, system and method for controlling a temperature of a heat generating device in a solid medium, wherein heat is extracted from the medium into at least one heat extraction device, the heat extraction device dissipates heat into an environment apart from the medium by a heat sink thermally coupled to the heat extraction device; and heat from the medium is dissipated into the heat sink by a first thermal interface material thermally coupling the heat sink to the medium.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Applicant: Research Triangle Insitute
    Inventors: Rama Venkatasubramanian, Randall Alley, Pratima Addepalli, Anil Reddy, Edward Siivola, Brooks O'Quinn, Kip Coonley, John Posthill, Thomas Colpitts