Patents by Inventor Praveen AANUR

Praveen AANUR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230357423
    Abstract: Provided herein are methods of treating cancer using agonistic antibodies that specifically bind to immunostimulatory receptors, wherein the antibodies are administered in an amount and/or frequency sufficient to achieve and/or maintain a receptor occupancy of less than about 80%, for example, a receptor occupancy of about 20% to about 80%. Also provided are methods of determining human doses for such agonistic antibodies, and methods for monitoring receptor occupancy of the agonistic antibodies in order to maintain effective antibody levels in, e.g., human patients.
    Type: Application
    Filed: March 10, 2023
    Publication date: November 9, 2023
    Applicant: Bristol-Myers Squibb Company
    Inventors: Marie-Claude GAUDREAU, Chan GAO, Michael QUIGLEY, Praveen AANUR
  • Patent number: 11603410
    Abstract: Provided herein are methods of treating cancer using agonistic antibodies that specifically bind to immunostimulatory receptors, wherein the antibodies are administered in an amount and/or frequency sufficient to achieve and/or maintain a receptor occupancy of less than about 80%, for example, a receptor occupancy of about 20% to about 80%. Also provided are methods of determining human doses for such agonistic antibodies, and methods for monitoring receptor occupancy of the agonistic antibodies in order to maintain effective antibody levels in, e.g., human patients. Also provided are methods of measuring soluble OX40 in a subject. Also provided are methods of treating cancer, comprising administering to the subject an effective amount of each of an anti-OX40 antibody and an anti-PD-1 antibody.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: March 14, 2023
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Marie-Claude Gaudreau, Chan Gao, Michael Quigley, Praveen Aanur
  • Publication number: 20200405806
    Abstract: Provided are methods for clinical treatment of cancers or tumors (e.g., advanced solid tumors) using (i) a combination of a tetanus toxoid, anti-OX40 antibody and anti-PD-1 antibody, (ii) a combination of anti-OX40 antibody and anti-PD-1 antibody, (iii) a combination of a tetanus toxoid and anti-PD-1 antibody, or (iv) an anti-PD-1 antibody.
    Type: Application
    Filed: February 7, 2019
    Publication date: December 31, 2020
    Applicant: Bristol-Myers Squibb Company
    Inventors: Michael QUIGLEY, Praveen AANUR, Zheng YANG
  • Publication number: 20200369777
    Abstract: Provided herein are methods of treating cancer using agonistic antibodies that specifically bind to immunostimulatory receptors, wherein the antibodies are administered in an amount and/or frequency sufficient to achieve and/or maintain a receptor occupancy of less than about 80%, for example, a receptor occupancy of about 20% to about 80%. Also provided are methods of determining human doses for such agonistic antibodies, and methods for monitoring receptor occupancy of the agonistic antibodies in order to maintain effective antibody levels in, e.g., human patients. Also provided are methods of measuring soluble OX40 in a subject. Also provided are methods of treating cancer, comprising administering to the subject an effective amount of each of an anti-OX40 antibody and an anti-PD-1 antibody.
    Type: Application
    Filed: November 1, 2018
    Publication date: November 26, 2020
    Applicant: Bristol-Myers Squibb Company
    Inventors: Marie-Claude GAUDREAU, Chan GAO, Michael QUIGLEY, Praveen AANUR
  • Publication number: 20180237534
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: May 26, 2016
    Publication date: August 23, 2018
    Inventors: Zhehong CAI, Indrani CHAKRABORTY, Marie-Michelle Navarro GARCIA, Thomas D. KEMPE, Alan J. KORMAN, Alexander T. KOZHICH, Hadia LEMAR, Mark MAURER, Christina Maria MILBURN, Michael QUIGLEY, Maria RODRIGUEZ, Xiang SHAO, Mohan SRINIVASAN, Brenda L. STEVENS, Kent THUDIUM, Susan Chien-Szu WONG, Jochem GOKEMEIJER, Xi-Tao WANG, Han CHANG, Christine HUANG, Maria JURE-KUNKEL, Zheng YANG, Yan FENG, Patrick GUIRNALDA, Nils LONBERG, Bryan C. BARNHART, Aaron P. YAMNIUK, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL, Praveen AANUR, Mark J. SELBY
  • Publication number: 20160347849
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: May 26, 2016
    Publication date: December 1, 2016
    Inventors: Zhehong CAI, Indrani CHAKRABORTY, Marie-Michelle Navarro GARCIA, Thomas D. KEMPE, Alan J. KORMAN, Alexander T. KOZHICH, Hadia LEMAR, Mark MAURER, Christina Maria MILBURN, Michael QUIGLEY, Maria RODRIGUEZ, Xiang SHAO, Mohan SRINIVASAN, Brenda L. STEVENS, Kent THUDIUM, Susan Chien-Szu WONG, Jochem GOKEMEIJER, Xi-Tao WANG, Han CHANG, Christine HUANG, Maria JURE-KUNKEL, Zheng YANG, Yan FENG, Patrick GUIRNALDA, Nils LONBERG, Bryan C. BARNHART, Aaron P. YAMNIUK, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL, Praveen AANUR, Mark J. SELBY