Patents by Inventor Praveen Mosalikanti

Praveen Mosalikanti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085973
    Abstract: An apparatus and method are described, which prior to an event that could result in frequency overshoot, sends a signal to a voltage regulator or generator requesting a temporary supply voltage and/or current boost. This enables a clocking source, such as a phase locked loop (PLL) to lock fast while not needing any long-term voltage guard bands. The apparatus and scheme allows for on-the-fly change in supply voltage and/or clock frequency for a processor with little to no impact on Vmin. During the clock frequency overshoot, the supply voltage is temporarily boosted and then reduced down to the expected voltage level of the power supply. Such boost allows for absorbing the clock frequency overshoot impact. The supply voltage level can be reduced in a step-wise fashion to avoid any potential undershoot in clock frequency.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Praveen MOSALIKANTI, Nasser A. KURD, Alexander GENDLER
  • Publication number: 20240077924
    Abstract: Embodiments of a power regulation circuit that ameliorates a first and second droop in a power source voltage that powers a processing core are disclosed. The power regulation circuit includes a first droop detector, a second droop detector and a frequency slowdown detection circuit. The first droop detector generates a first droop detection signal in a first detection state in response to detecting a first droop in the power source voltage. The second droop detector generates a second droop detection signal in a second detection state in response to detecting a second droop in the power source voltage. The frequency slowdown detection circuit to generate a frequency slowdown signal in a slowdown state in response to at least one of the first droop detection signal being in the first detection state and the second droop detection signal being in the second detection state.
    Type: Application
    Filed: September 7, 2022
    Publication date: March 7, 2024
    Inventors: Praveen Mosalikanti, Robert Mongrain, Xingjian Cai, Yihong Yang, Long Wang
  • Patent number: 11847011
    Abstract: An apparatus and method are described, which prior to an event that could result in frequency overshoot, sends a signal to a voltage regulator or generator requesting a temporary supply voltage and/or current boost. This enables a clocking source, such as a phase locked loop (PLL) to lock fast while not needing any long-term voltage guard bands. The apparatus and scheme allows for on-the-fly change in supply voltage and/or clock frequency for a processor with little to no impact on Vmin. During the clock frequency overshoot, the supply voltage is temporarily boosted and then reduced down to the expected voltage level of the power supply. Such boost allows for absorbing the clock frequency overshoot impact. The supply voltage level can be reduced in a step-wise fashion to avoid any potential undershoot in clock frequency.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: December 19, 2023
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Nasser A. Kurd, Alexander Gendler
  • Publication number: 20230314488
    Abstract: A single droop detector and an asynchronous frequency recovery circuit may be used to slow down a frequency asynchronously when a voltage droop is detected and exit the droop event synchronously by gradually changing an electronic oscillator buffer capacitance until the frequency has been fully restored. This combination of a single droop detector and an asynchronous frequency recovery circuit may provide reduced detection and response latency. This solution may also provide improved performance in the presence of multiple voltage droop events that occur before a frequency has been fully restored from the previous droop. This solution also reduces or eliminates frequency overshoots and secondary voltage droops.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Praveen Mosalikanti, Vaughn J. Grossnickle, Nasser A. Kurd
  • Patent number: 11461504
    Abstract: An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: October 4, 2022
    Assignee: Intel Corporation
    Inventors: Nasser Kurd, Praveen Mosalikanti, Thripthi Hegde, Mark Neidengard, Vaughn Grossnickle, Qi S. Wang, Kandadai Ramesh
  • Patent number: 11211934
    Abstract: An apparatus is provided which comprises: a frequency locked loop (FLL) comprising an oscillator including a plurality of delay stages, wherein an output of each delay stage is counted to determine a frequency of the FLL; and one or more circuitries coupled to the FLL to adjust a power supply to the FLL according to the determined frequency of the FLL.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: December 28, 2021
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Qi Wang, Mark L. Neidengard, Vaughn J. Grossnickle, Nasser A. Kurd
  • Patent number: 11188117
    Abstract: An apparatus is provided for low latency adaptive clocking, the apparatus comprises: a first power supply rail to provide a first power; a second power supply rail to provide a second power; a third power supply rail to provide a third power; a voltage divider coupled to the first, second, and third power supply rails; a bias generator coupled to voltage divider and the third power supply rail; an oscillator coupled to the bias generator and the first supply rail; and a clock distribution network to provide an output of the oscillator to one or more logics, wherein the clock distribution network is coupled to the second power supply rail.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: November 30, 2021
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Nasser Kurd
  • Patent number: 11048284
    Abstract: Some embodiments include apparatuses and methods of operating such apparatuses. One of the embodiments includes an input node to receive an input voltage, a circuit portion to generate first, second, and third voltages based on the input voltage, a comparator circuit to compare the first voltage with the second voltage to generate a first signal and to compare the first voltage with the third voltage to generate a second signal, and an output circuit to generate an output signal based on the first and second signals.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: June 29, 2021
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Gerhard Schrom, Vaughn J. Grossnickle, Nasser A. Kurd
  • Publication number: 20210181831
    Abstract: An apparatus and method are described, which prior to an event that could result in frequency overshoot, sends a signal to a voltage regulator or generator requesting a temporary supply voltage and/or current boost. This enables a clocking source, such as a phase locked loop (PLL) to lock fast while not needing any long-term voltage guard bands. The apparatus and scheme allows for on-the-fly change in supply voltage and/or clock frequency for a processor with little to no impact on Vmin. During the clock frequency overshoot, the supply voltage is temporarily boosted and then reduced down to the expected voltage level of the power supply. Such boost allows for absorbing the clock frequency overshoot impact. The supply voltage level can be reduced in a step-wise fashion to avoid any potential undershoot in clock frequency.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 17, 2021
    Applicant: Intel Corporation
    Inventors: Praveen MOSALIKANTI, Nasser A. KURD, Alexander GENDLER
  • Publication number: 20210083678
    Abstract: An apparatus is provided which comprises: a frequency locked loop (FLL) comprising an oscillator including a plurality of delay stages, wherein an output of each delay stage is counted to determine a frequency of the FLL; and one or more circuitries coupled to the FLL to adjust a power supply to the FLL according to the determined frequency of the FLL.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 18, 2021
    Applicant: Intel Corporation
    Inventors: Praveen Mosalikanti, Qi Wang, Mark L. Neidengard, Vaughn J. Grossnickle, Nasser A. Kurd
  • Patent number: 10928886
    Abstract: An apparatus and method are described, which prior to an event that could result in frequency overshoot, sends a signal to a voltage regulator or generator requesting a temporary supply voltage and/or current boost. This enables a clocking source, such as a phase locked loop (PLL) to lock fast while not needing any long-term voltage guard bands. The apparatus and scheme allows for on-the-fly change in supply voltage and/or clock frequency for a processor with little to no impact on Vmin During the clock frequency overshoot, the supply voltage is temporarily boosted and then reduced down to the expected voltage level of the power supply. Such boost allows for absorbing the clock frequency overshoot impact. The supply voltage level can be reduced in a step-wise fashion to avoid any potential undershoot in clock frequency.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Nasser A. Kurd, Alexander Gendler
  • Publication number: 20210049307
    Abstract: An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Applicant: Intel Corporation
    Inventors: Nasser Kurd, Praveen Mosalikanti, Thripthi Hegde, Mark Neidengard, Vaughn Grossnickle, Qi S. Wang, Kandadai Ramesh
  • Patent number: 10824764
    Abstract: An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: November 3, 2020
    Assignee: Intel Corporation
    Inventors: Nasser Kurd, Praveen Mosalikanti, Thripthi Hegde, Mark Neidengard, Vaughn Grossnickle, Qi S. Wang, Kandadai Ramesh
  • Patent number: 10790838
    Abstract: Dynamic voltage frequency scaling to transition to a target clock frequency and associated target voltage is provided. Dynamic voltage frequency scaling to a different clock frequency is performed by gradually changing the clock frequency using discrete variable-size steps, while dynamically switching to faster or slower reference clock frequencies as appropriate to harmonize the frequency trajectory with system requirements.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Vaughn J. Grossnickle, Syed Feruz Syed Farooq, Mark Neidengard, Nasser A. Kurd
  • Patent number: 10790832
    Abstract: An apparatus is provided which comprises: a frequency locked loop (FLL) comprising an oscillator including a plurality of delay stages, wherein an output of each delay stage is counted to determine a frequency of the FLL; and one or more circuitries coupled to the FLL to adjust a power supply to the FLL according to the determined frequency of the FLL.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Qi Wang, Mark L. Neidengard, Vaughn J. Grossnickle, Nasser A. Kurd
  • Publication number: 20200272197
    Abstract: An apparatus is provided for low latency adaptive clocking, the apparatus comprises: a first power supply rail to provide a first power; a second power supply rail to provide a second power; a third power supply rail to provide a third power; a voltage divider coupled to the first, second, and third power supply rails; a bias generator coupled to voltage divider and the third power supply rail; an oscillator coupled to the bias generator and the first supply rail; and a clock distribution network to provide an output of the oscillator to one or more logics, wherein the clock distribution network is coupled to the second power supply rail.
    Type: Application
    Filed: September 6, 2018
    Publication date: August 27, 2020
    Applicant: Intel Corporation
    Inventors: Praveen Mosalikanti, Nasser Kurd
  • Publication number: 20200272220
    Abstract: An apparatus and method are described, which prior to an event that could result in frequency overshoot, sends a signal to a voltage regulator or generator requesting a temporary supply voltage and/or current boost. This enables a clocking source, such as a phase locked loop (PLL) to lock fast while not needing any long-term voltage guard bands. The apparatus and scheme allows for on-the-fly change in supply voltage and/or clock frequency for a processor with little to no impact on Vmin During the clock frequency overshoot, the supply voltage is temporarily boosted and then reduced down to the expected voltage level of the power supply. Such boost allows for absorbing the clock frequency overshoot impact. The supply voltage level can be reduced in a step-wise fashion to avoid any potential undershoot in clock frequency.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 27, 2020
    Inventors: Praveen MOSALIKANTI, Nasser KURD, Alexander GENDLER
  • Patent number: 10707877
    Abstract: Switched adaptive clocking is provided. A switched adaptive clocking circuit includes a digitally controlled oscillator, a clock generator and a glitch-free multiplexer. The switched adaptive clocking circuit to adaptively switch a source of an output clock from a main clock generated by a clock source to a digitally controlled oscillator clock generated by a digitally controlled oscillator upon detection of a voltage droop, and to quickly switch back to the main clock after recovery from the voltage droop.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Turbo Majumder, Minki Cho, Carlos Tokunaga, Praveen Mosalikanti, Nasser A. Kurd, Muhammad M. Khellah
  • Patent number: 10614774
    Abstract: Techniques and mechanisms for an integrated circuit (IC) chip to generate a clock signal for use by one or more resources of the IC chip. In an embodiment, a clock signal is generated with phase-locked loop (PLL) circuitry of an IC chip based on a cyclical signal which is provided to the IC chip by an external source. A supply voltage provided to the PLL circuitry is automatically updated based on one of a requested frequency for the clock signal, a frequency of the received cyclical signal, or a voltage of a control signal used by a voltage controlled oscillator of the PLL circuitry. In another embodiment, a series of incremental changes to a frequency of the clock signal is automatically performed according to a predefined overclocking scheme or underclocking scheme.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 7, 2020
    Assignee: Intel Corporation
    Inventors: Nasser Kurd, Daniel Ragland, Ameya Ambardekar, John Fallin, Praveen Mosalikanti, Vaughn J. Grossnickle
  • Publication number: 20200005728
    Abstract: Techniques and mechanisms for an integrated circuit (IC) chip to generate a clock signal for use by one or more resources of the IC chip. In an embodiment, a clock signal is generated with phase-locked loop (PLL) circuitry of an IC chip based on a cyclical signal which is provided to the IC chip by an external source. A supply voltage provided to the PLL circuitry is automatically updated based on one of a requested frequency for the clock signal, a frequency of the received cyclical signal, or a voltage of a control signal used by a voltage controlled oscillator of the PLL circuitry. In another embodiment, a series of incremental changes to a frequency of the clock signal is automatically performed according to a predefined overclocking scheme or underclocking scheme.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Applicant: Intel Corporation
    Inventors: Nasser Kurd, Daniel Ragland, Ameya Ambardekar, John Fallin, Praveen Mosalikanti, Vaughn J. Grossnickle