Patents by Inventor Praveenkumar Pasupathy

Praveenkumar Pasupathy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10612994
    Abstract: A method, system and computer program product for calculating highway and airport pavement deflections. A pavement monitoring system includes a tractor and a semi-trailer, where a rigid horizontal beam is suspended under the semi-trailer. Various sensing elements are attached to the rigid beam, such as laser scanning sensors configured to measure a distance from the laser scanning sensors to the same point on the pavement at two different times, a gyrometer configured to estimate a raw pitch rate, an inertial measurement unit configured to estimate an orientation of the beam and accelerometers configured to measure an acceleration at a same level as corresponding laser scanning sensors. By utilizing these sensing elements, a more accurate pavement deflection is estimated by not relying on indirect measurements. Furthermore, the tractor and semi-trailer of the pavement monitoring system may travel at the velocity of traffic.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: April 7, 2020
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jorge Prozzi, Christian Claudel, Praveenkumar Pasupathy
  • Publication number: 20180095002
    Abstract: A method, system and computer program product for calculating highway and airport pavement deflections. A pavement monitoring system includes a tractor and a semi-trailer, where a rigid horizontal beam is suspended under the semi-trailer. Various sensing elements are attached to the rigid beam, such as laser scanning sensors configured to measure a distance from the laser scanning sensors to the same point on the pavement at two different times, a gyrometer configured to estimate a raw pitch rate, an inertial measurement unit configured to estimate an orientation of the beam and accelerometers configured to measure an acceleration at a same level as corresponding laser scanning sensors. By utilizing these sensing elements, a more accurate pavement deflection is estimated by not relying on indirect measurements. Furthermore, the tractor and semi-trailer of the pavement monitoring system may travel at the velocity of traffic.
    Type: Application
    Filed: September 18, 2017
    Publication date: April 5, 2018
    Inventors: Jorge Prozzi, Christian Claudel, Praveenkumar Pasupathy
  • Patent number: 9581559
    Abstract: A corrosion detection sensor embedded within a concrete structure. The sensor includes a hermetically sealed resonant circuit that is a resistor-inductor-capacitor (RLC) circuit. The sensor further includes a sacrificial transducer that is inductively or capacitively coupled to the resonant circuit, where the sacrificial transducer is exposed to an environment outside the sensor to monitor corrosion of steel reinforcement in the concrete structure. Additionally, the sensor includes a protective cementitious housing surrounding the resonant circuit and the sacrificial transducer. The sensor further includes a diffusion layer placed over the sacrificial transducer, where the diffusion layer enables a dispersion of a chemical species over the sacrificial transducer. In this manner, a more uniform distribution of the chemical species over the surface of the sacrificial transducer mitigating the localized corrosion is ensured. Furthermore, such a design is less susceptible to false positives.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: February 28, 2017
    Assignee: Board of Regents, The University of Texas System
    Inventors: Dean P. Neikirk, Sharon L. Wood, Praveenkumar Pasupathy, Ali Abu Yosef
  • Patent number: 9291586
    Abstract: A sensor for detecting one or more materials includes a substrate, a passivation layer formed on the substrate, a self-resonant structure and a high surface area material disposed on the passivation layer. The self-resonant structure includes a planar spiral inductor and a plurality of planar interdigitated capacitor electrodes disposed within the passivation layer. The planar spiral inductor includes an electrically conductive trace formed on the substrate in a planar spiral pattern having at least two turns and an inter-winding space between parallel segments of the electrically conductive trace. The plurality of planar interdigitated capacitor electrodes are electrically connected to the electrically conductive trace of the planar spiral inductor and formed on the substrate within the inter-winding space of at least one outermost turn of the planar spiral inductor. The high surface area material includes a conformal polymer coating to increase a sensitivity to the one or more materials.
    Type: Grant
    Filed: May 5, 2013
    Date of Patent: March 22, 2016
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Dean P. Neikirk, Praveenkumar Pasupathy, Sheng Zhang, Brad Leonhardt, John G. Ekerdt, Brian A. Korgel, Vincent C. Holmberg, Catherine D. Shipman, Timothy D. Bogart, Aaron Chockla
  • Publication number: 20150048844
    Abstract: A corrosion detection sensor embedded within a concrete structure. The sensor includes a hermetically sealed resonant circuit that is a resistor-inductor-capacitor (RLC) circuit. The sensor further includes a sacrificial transducer that is inductively or capacitively coupled to the resonant circuit, where the sacrificial transducer is exposed to an environment outside the sensor to monitor corrosion of steel reinforcement in the concrete structure. Additionally, the sensor includes a protective cementitious housing surrounding the resonant circuit and the sacrificial transducer. The sensor further includes a diffusion layer placed over the sacrificial transducer, where the diffusion layer enables a dispersion of a chemical species over the sacrificial transducer. In this manner, a more uniform distribution of the chemical species over the surface of the sacrificial transducer mitigating the localized corrosion is ensured. Furthermore, such a design is less susceptible to false positives.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: Dean P. Neikirk, Sharon L. Wood, Praveenkumar Pasupathy, Ali Abu Yosef