Patents by Inventor Pravin Narwankar

Pravin Narwankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8662941
    Abstract: Apparatus for supporting the wires in a hot wire chemical vapor deposition (HWCVD) system are provided herein. In some embodiments, a terminal connector for a hot wire chemical vapor deposition (HWCVD) system may include a base; a wire clamp moveably disposed with relation to the base along an axis; a reflector shield extending from the wire clamp in a first direction along the axis; and a tensioner coupled to the base and wire clamp to bias the wire clamp in a second direction opposite the first direction.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: March 4, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Pravin Narwankar, Victor Pushparaj, Dieter Haas
  • Patent number: 8343279
    Abstract: Embodiments of the invention provide apparatuses and methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: January 1, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Nyi Oo Myo, Kenric Choi, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig R. Metzner, Paul Deaten
  • Publication number: 20120289078
    Abstract: Apparatus for supporting the wires in a hot wire chemical vapor deposition (HWCVD) system are provided herein. In some embodiments, a terminal connector for a hot wire chemical vapor deposition (HWCVD) system may include a base; a wire clamp moveably disposed with relation to the base along an axis; a reflector shield extending from the wire clamp in a first direction along the axis; and a tensioner coupled to the base and wire clamp to bias the wire clamp in a second direction opposite the first direction.
    Type: Application
    Filed: April 24, 2012
    Publication date: November 15, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: PRAVIN NARWANKAR, VICTOR PUSHPARAJ, DIETER HAAS
  • Patent number: 8282992
    Abstract: Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 9, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Nyi Oo Myo, Kenric Cho, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig R. Metzner, Paul Deaten
  • Publication number: 20100075060
    Abstract: This invention provides a high volume manufacturing compatible process tool and method for integrating deposition of carbon nanotubes into device fabrication. A linear process tool for growing carbon nanotubes comprises a linear conveyor for moving a substrate through the linear process tool and a micro-plasma process unit including a plurality of micro-plasma spray guns arranged in an array, the micro-plasma process unit being positioned above the linear conveyor and configured to deposit material on the surface of the substrate as the substrate passes under the micro-plasma process unit on the linear conveyor. The micro-plasma process unit may include a first array of micro-plasma spray guns for depositing a catalyst material and a second array of micro-plasma spray guns for depositing the carbon nanotubes.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 25, 2010
    Inventors: PRAVIN NARWANKAR, Victor Pushparaj, Omkaram Nalamasu
  • Publication number: 20080063798
    Abstract: The present invention generally comprises an apparatus for depositing high k dielectric or metal gate materials in which toxic, flammable, or pyrophoric precursors may be used. Exhaust conduits may be placed on the liquid precursor or solid precursor delivery cabinet, the gas panel, and the water vapor generator area. The exhaust conduits permit a technician to access the apparatus without undue exposure to toxic, pyrophoric, or flammable gases that may collect within the liquid deliver cabinet, gas panel, and water vapor generator area.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 13, 2008
    Inventors: Shreyas Kher, Son Nguyen, Pravin Narwankar, Sanjeev Tandon, Steve Jumper, Vincent Sermona
  • Publication number: 20080041307
    Abstract: The embodiments of the invention describe a process chamber, such as an ALD chamber, that has gas delivery conduits with gradually increasing diameters to reduce Joule-Thompson effect during gas delivery, a ring-shaped gas liner leveled with the substrate support to sustain gas temperature and to reduce gas flow to the substrate support backside, and a gas reservoir to allow controlled delivery of process gas. The gas conduits with gradually increasing diameters, the ring-shaped gas liner, and the gas reservoir help keep the gas temperature stable and reduce the creation of particles.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Inventors: Son Nguyen, Kedarnath Sangam, Miriam Schwartz, Kenric Choi, Sanjay Bhat, Pravin Narwankar, Shreyas Kher, Rahul Sharangapani, Shankar Muthukrishnam, Paul Deaton
  • Publication number: 20080044569
    Abstract: Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Inventors: Nyi Myo, Kenric Cho, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig Metzner, Paul Deaten
  • Patent number: 7294205
    Abstract: A layer of reduced stress is formed on a substrate using an HDP-CVD system by delaying or interrupting the application of capacitively coupled RF energy. The layer is formed by introducing a process gas into the HDP system chamber and forming a plasma from the process gas by the application of RF power to an inductive coil. After a selected period, a second layer of the film is deposited by maintaining the inductively-coupled plasma and biasing the plasma toward the substrate to enhance the sputtering effect of the plasma. In a preferred embodiment, the deposited film is a silicon oxide film, and biasing is performed by application of capacitively coupled RF power from RF generators to a ceiling plate electrode and wafer support electrode.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: November 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: K. V. Ravi, Kent Rossman, Turgut Sahin, Pravin Narwankar
  • Publication number: 20070049043
    Abstract: A method and apparatus for forming a nitrided gate dielectric. The method comprises incorporating nitrogen into a dielectric film using a plasma nitridation process to form a nitrided gate dielectric. The first step involves providing a substrate comprising a gate dielectric film. The second step involves inducing a voltage on the substrate. Finally, the substrate is exposed to a plasma comprising a nitrogen source while maintaining the voltage to form a nitrided gate dielectric on the substrate. In one embodiment, the voltage is induced on the substrate by applying a voltage to an electrostatic chuck supporting the substrate. In another embodiment, the voltage is induced on the substrate by applying a DC bias voltage to an electrode positioned adjacent the substrate.
    Type: Application
    Filed: August 23, 2005
    Publication date: March 1, 2007
    Inventors: Shankar Muthukrishnan, Rahul Sharangpani, Tejal Goyani, Pravin Narwankar, Shreyas Kher, Yi Ma, Giuseppina Conti
  • Publication number: 20060153995
    Abstract: Methods for forming dielectric materials on a substrate in a single cluster tool are provided. In one embodiment, the method includes providing a cluster tool having a plurality of deposition chambers, depositing a metal-containing oxide layer on a substrate in a first chamber of the cluster tool, treating the metal-containing oxide layer with an insert plasma process in a second chamber of the cluster tool, annealing the metal-containing oxide layer in a third chamber of the cluster tool, and depositing a gate electrode layer on the annealed substrate in a fourth chamber of the cluster tool.
    Type: Application
    Filed: December 9, 2005
    Publication date: July 13, 2006
    Inventors: Pravin Narwankar, Shreyas Kher, Shankar Muthukrishnan, Rahul Sharangpani, Philip Kraus, Chris Olsen, Khaled Ahmed
  • Publication number: 20060062917
    Abstract: In one embodiment, a method for forming a morphologically stable dielectric material is provided which includes exposing a substrate to a hafnium precursor, a silicon precursor and an oxidizing gas to form hafnium silicate material during a chemical vapor deposition (CVD) process and subsequently and optionally exposing the substrate to a post deposition anneal, a nitridation process and a thermal annealing process. In some examples, the hafnium and silicon precursors used during a metal-organic CVD (MOCVD) process are alkylamino compounds, such as tetrakis(diethylamino)hafnium (TDEAH) and tris(dimethylamino)silane (Tris-DMAS). In another embodiment, other metal precursors may be used to form a variety of metal silicates containing tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof.
    Type: Application
    Filed: September 9, 2005
    Publication date: March 23, 2006
    Inventors: Shankar Muthukrishnan, Tejal Goyani, Rahul Sharangpani, Shreyas Kher, Pravin Narwankar, Khaled Ahmed, Yi Ma
  • Publication number: 20060019033
    Abstract: In one embodiment, a method for forming a dielectric material is provided which includes exposing a substrate sequentially to a metal-containing precursor and an oxidizing gas to form metal oxide (e.g., HfOx) during an ALD process and subsequently exposing the substrate to an inert plasma process and a thermal annealing process. Generally, the metal oxide contains hafnium, tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof. In one example, the inert plasma process contains argon and is free of nitrogen, while the thermal annealing process contains oxygen. In another example, an ALD process to form a metal oxide includes exposing the substrate sequentially to a metal precursor and an oxidizing gas containing water vapor formed by a catalytic water vapor generator.
    Type: Application
    Filed: June 24, 2005
    Publication date: January 26, 2006
    Inventors: Shankar Muthukrishnan, Rahul Sharangpani, Tejal Goyani, Pravin Narwankar, Shreyas Kher, Khaled Ahmed, Yi Ma
  • Publication number: 20050271813
    Abstract: Embodiments of the invention provide methods for depositing dielectric materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one example, a method includes sequentially exposing a substrate to a hafnium precursor and an oxidizing gas to deposit a hafnium oxide material thereon. In another example, a hafnium silicate material is deposited by sequentially exposing a substrate to the oxidizing gas and a process gas containing a hafnium precursor and a silicon precursor. The oxidizing gas usually contains water vapor formed by flowing a hydrogen source gas and an oxygen source gas through a water vapor generator. In another example, a method includes sequentially exposing a substrate to the oxidizing gas and at least one precursor to deposit hafnium oxide, zirconium oxide, lanthanum oxide, tantalum oxide, titanium oxide, aluminum oxide, silicon oxide, aluminates thereof, silicates thereof, derivatives thereof or combinations thereof.
    Type: Application
    Filed: May 12, 2005
    Publication date: December 8, 2005
    Inventors: Shreyas Kher, Pravin Narwankar, Rahul Sharangapani
  • Publication number: 20050271812
    Abstract: Embodiments of the invention provide apparatuses and methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic.
    Type: Application
    Filed: May 12, 2005
    Publication date: December 8, 2005
    Inventors: Nyi Myo, Kenric Choi, Shreyas Kher, Pravin Narwankar, Steve Poppe, Craig Metzner, Paul Deaten
  • Publication number: 20050260357
    Abstract: In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
    Type: Application
    Filed: May 21, 2004
    Publication date: November 24, 2005
    Inventors: Christopher Olsen, Pravin Narwankar, Shreyas Kher, Randhir Thakur, Shankar Muthukrishnan, Philip Kraus
  • Publication number: 20050260347
    Abstract: In one embodiment, a method for depositing a capping layer on a dielectric layer in a process chamber is provided which includes depositing the dielectric layer on a substrate surface, depositing a silicon-containing layer by an ALD process, comprising alternately pulsing a silicon precursor and an oxidizing gas into the process chamber, and exposing the silicon-containing layer to a nitridation process. In another embodiment, a method for depositing a silicon-containing capping layer on a dielectric layer in a process chamber by an ALD process is provided which includes flowing a silicon precursor into the process chamber, purging the process chamber with a purge gas, flowing an oxidizing gas comprising water formed by flowing a H2 gas and an oxygen-containing gas through a water vapor generator, and purging the process chamber with the purge gas.
    Type: Application
    Filed: May 21, 2004
    Publication date: November 24, 2005
    Inventors: Pravin Narwankar, Gregg Higashi
  • Publication number: 20050252449
    Abstract: The embodiments of the invention describe a process chamber, such as an ALD chamber, that has gas delivery conduits with gradually increasing diameters to reduce Joule-Thompson effect during gas delivery, a ring-shaped gas liner leveled with the substrate support to sustain gas temperature and to reduce gas flow to the substrate support backside, and a gas reservoir to allow controlled delivery of process gas. The gas conduits with gradually increasing diameters, the ring-shaped gas liner, and the gas reservoir help keep the gas temperature stable and reduce the creation of particles.
    Type: Application
    Filed: April 29, 2005
    Publication date: November 17, 2005
    Inventors: Son Nguyen, Kedarnath Sangam, Miriam Schwartz, Kenric Choi, Sanjay Bhat, Pravin Narwankar, Shreyas Kher, Rahul Sharangapani, Shankar Muthukrishnan, Paul Deaton
  • Patent number: 6677254
    Abstract: The formation of a barrier layer over a high k dielectric layer and deposition of a conducting layer over the barrier layer prevents intermigration between the species of the high k dielectric layer and the conducting layer and prevents oxygen scavenging of the high k dielectric layer. One example of a capacitor stack device provided includes a high k dielectric layer of Ta2O5, a barrier layer of TaON or TiON formed at least in part by a remote plasma process, and a top electrode of TiN. The processes may be conducted at about 300 to 700° C. and are thus useful for low thermal budget applications. Also provided are MIM capacitor constructions and methods in which an insulator layer is formed by remote plasma oxidation of a bottom electrode.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: January 13, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Pravin Narwankar, Mouloud Bakli, Ravi Rajagopalan, Randall S. Urdahl, Asher Sinensky, Shankarram Athreya
  • Patent number: 6617266
    Abstract: A process for forming high k dielectric thin films on a substrate, e.g., silicon, by 1) low temperature (500° C. or less) deposition of a dielectric material onto a surface, followed by 2) high temperature post-deposition annealing. The deposition can take place in an oxidative environment, followed by annealing, or alternatively the deposition can take place in a non-oxidative environment (e.g., N2), followed by oxidation and annealing.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: September 9, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Annabel Susan Nickles, Ravi Rajagopalan, Pravin Narwankar