Patents by Inventor Prem Kumar Patchaikani

Prem Kumar Patchaikani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230399037
    Abstract: A vehicle control system includes a controller to receive a current commanded speed, determine a current moving speed, and calculate a reference shaped speed to operate a propulsion system and/or a brake system to cause the current moving speed to approach the current commanded speed. The reference speed is based on a reference shaping model that changes the reference speed based on relative values of the current commanded speed, a previous commanded speed, the current moving speed, and a previous reference shaped speed. The controller controls the propulsion system and/or the brake system to cause the vehicle system to move at the calculated reference shaped speed. A method includes receiving a current commanded speed, determining a current moving speed, calculating a reference shaped speed, and controlling the one or more of the propulsion system or the brake system to cause the vehicle system to move at the reference shaped speed.
    Type: Application
    Filed: October 18, 2022
    Publication date: December 14, 2023
    Inventors: Derek K. Woo, Sahil Modi, Manthram Sivasubramaniam, Jayeshkumar Jayanarayan Barve, Sanketh Bhat, Prem Kumar Patchaikani, Adam Franco, Brian Lee Staton, Marshall Tetterton
  • Publication number: 20230331199
    Abstract: A vehicle control system may determine a required tractive effort and/or a required braking effort to propel a vehicle system at a determined speed. The vehicle control system may determine a throttle setting or a brake setting to provide the required tractive effort and/or the required braking effort and communicate a control signal from a remote controller device to an onboard controller device. The vehicle control system may operate a propulsion system at the throttle setting and/or a brake system at the brake setting to move the vehicle system at the determined speed.
    Type: Application
    Filed: March 13, 2023
    Publication date: October 19, 2023
    Inventors: Derek K. Woo, Travis Jarboe, Brian Lee Staton, Sanketh Bhat, Prem Kumar Patchaikani, Jayeshkumar Jayanarayan Barve, Saurabh Shamkant Dhamne
  • Patent number: 11015479
    Abstract: A method for predicting an anomaly in a combustor (16) is presented. The method includes receiving signals representative of parameters in one or more combustion cans (22, 24) of the combustor, generating a plurality of patterns based on a permutation entropy window and the signals, identifying a plurality of pattern categories in the plurality of patterns, determining a permutation entropy based on the plurality of patterns and the plurality of pattern categories, and predicting an anomaly in the combustor based on the permutation entropy. The method further includes comparing the plurality of pattern categories to determined permutations of pattern categories if the anomaly is present in the combustor, and predicting a category of the anomaly based on the comparison of the plurality of pattern categories to the determined permutations of pattern categories.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: May 25, 2021
    Assignee: General Electric Company
    Inventors: Sidharth Abrol, Sangeeta Balram, Prem Kumar Patchaikani, Prabhanjana Kalya
  • Patent number: 10844813
    Abstract: Systems and methods are provided for controlling exhaust gas recirculation (EGR). In one example, an engine system includes a first EGR valve coupling an exhaust manifold to an engine exhaust system, a second EGR valve coupling the exhaust manifold to an engine intake system, and a control unit. The control unit selectively adjusts a position of the first EGR valve based on a target amount, and adjusts a position of the second EGR valve based on the target amount and a position of the first EGR valve. Responsive to a first degradation condition of the first EGR valve, the control unit adjusts the position of the second EGR valve based on the target amount and based on a pressure of the first exhaust manifold, and responsive to a second degradation condition of the first EGR valve, adjusts the position of the second EGR valve based on the target amount.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: November 24, 2020
    Assignee: Transportation IP Holdings, LLC
    Inventors: Dipankar Deb, Manthram Sivasubramaniam, Prashant Srinivasan, Sharath Sridhar Aramanekoppa, Prem Kumar Patchaikani, Sachin Shivajirao Kulkarni, Sebastian Walter Freund, Jassin Marcel Fritz, Georgios Bikas, James Henry Yager, Shashi Kiran
  • Patent number: 10612444
    Abstract: A fault detection method for a selective catalytic reduction (SCR) system comprising an SCR reactor, includes receiving a plurality of operating parameters (702) of the SCR reactor from a plurality of sensors. The method also includes estimating a state of an adaptive reactor model (704) representative of the SCR reactor based on the plurality of operating parameters. The method also includes generating a feature parameter (706) based on the plurality of operating parameters and the estimated state of the adaptive reactor model. The method includes determining a fault in the SCR system (708) based on the feature parameter.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: April 7, 2020
    Assignee: General Electric Company
    Inventors: Sangeeta Balram, Sidharth Abrol, Prem Kumar Patchaikani
  • Publication number: 20190234352
    Abstract: Systems and methods are provided for controlling exhaust gas recirculation (EGR). In one example, an engine system includes a first EGR valve coupling an exhaust manifold to an engine exhaust system, a second EGR valve coupling the exhaust manifold to an engine intake system, and a control unit. The control unit selectively adjusts a position of the first EGR valve based on a target amount, and adjusts a position of the second EGR valve based on the target amount and a position of the first EGR valve. Responsive to a first degradation condition of the first EGR valve, the control unit adjusts the position of the second EGR valve based on the target amount and based on a pressure of the first exhaust manifold, and responsive to a second degradation condition of the first EGR valve, adjusts the position of the second EGR valve based on the target amount.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Inventors: Dipankar Deb, Manthram Sivasubramaniam, Prashant Srinivasan, Sharath Sridhar Aramanekoppa, Prem Kumar Patchaikani, Sachin Shivajirao Kulkarni, Sebastian Walter Freund, Jassin Marcel Fritz, Georgios Bikas, James Henry Yager, Shashi Kiran
  • Patent number: 10253731
    Abstract: Systems and methods are provided for controlling exhaust gas recirculation (EGR). In one example, an engine system includes a first EGR valve coupling an exhaust manifold to an engine exhaust system, a second EGR valve coupling the exhaust manifold to an engine intake system, and a control unit. The control unit selectively adjusts a position of the first EGR valve based on a target amount, and adjusts a position of the second EGR valve based on the target amount and a position of the first EGR valve. Responsive to a first degradation condition of the first EGR valve, the control unit adjusts the position of the second EGR valve based on the target amount and based on a pressure of the first exhaust manifold, and responsive to a second degradation condition of the first EGR valve, adjusts the position of the second EGR valve based on the target amount.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: April 9, 2019
    Assignee: GE Global Sourcing LLC
    Inventors: Dipankar Deb, Manthram Sivasubramaniam, Prashant Srinivasan, Sharath Sridhar Aramanekoppa, Prem Kumar Patchaikani, Sachin Shivajirao Kulkarni, Sebastian Walter Freund, Jassin Marcel Fritz, Georgios Bikas, James Henry Yager, Shashi Kiran
  • Publication number: 20190032510
    Abstract: A method for predicting an anomaly in a combustor (16) is presented. The method includes receiving signals representative of parameters in one or more combustion cans (22, 24) of the combustor, generating a plurality of patterns based on a permutation entropy window and the signals, identifying a plurality of pattern categories in the plurality of patterns, determining a permutation entropy based on the plurality of patterns and the plurality of pattern categories, and predicting an anomaly in the combustor based on the permutation entropy. The method further includes comparing the plurality of pattern categories to determined permutations of pattern categories if the anomaly is present in the combustor, and predicting a category of the anomaly based on the comparison of the plurality of pattern categories to the determined permutations of pattern categories.
    Type: Application
    Filed: February 1, 2017
    Publication date: January 31, 2019
    Inventors: Sidharth Abrol, Sangeeta Balram, Prem Kumar Patchaikani, Prabhanjana Kalya
  • Publication number: 20170167341
    Abstract: A method of emission control includes receiving a slip set-point and a residual set-point corresponding to a reductant from a selective catalyst reduction (SCR) reactor. The method further includes receiving a plurality of inlet parameters of the SCR reactor and a slip value corresponding to the reductant from outlet of the SCR reactor. The method also includes generating a feedback signal value and a feedforward signal using a gain scheduling approach. The feedback signal is determined based on the slip set-point and the slip value. The feedforward signal value is determined based on a residual value of the reductant and the plurality of inlet parameters using a time-varying kinetic model. The method further includes determining a flow set-point corresponding to the reductant based on the feedback signal value and the feedforward signal value and regulating injection of the reductant into the SCR reactor based on the flow set-point.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 15, 2017
    Inventors: Sidharth ABROL, Sangeeta BALRAM, Prem Kumar PATCHAIKANI
  • Publication number: 20170167349
    Abstract: A fault detection method for a selective catalytic reduction (SCR) system comprising an SCR reactor, includes receiving a plurality of operating parameters (702) of the SCR reactor from a plurality of sensors. The method also includes estimating a state of an adaptive reactor model (704) representative of the SCR reactor based on the plurality of operating parameters. The method also includes generating a feature parameter (706) based on the plurality of operating parameters and the estimated state of the adaptive reactor model. The method includes determining a fault in the SCR system (708) based on the feature parameter.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 15, 2017
    Inventors: Sangeeta BALRAM, Sidharth ABROL, Prem Kumar PATCHAIKANI
  • Publication number: 20160160811
    Abstract: Systems and methods are provided for controlling exhaust gas recirculation (EGR). In one example, an engine system includes a first EGR valve coupling an exhaust manifold to an engine exhaust system, a second EGR valve coupling the exhaust manifold to an engine intake system, and a control unit. The control unit selectively adjusts a position of the first EGR valve based on a target amount, and adjusts a position of the second EGR valve based on the target amount and a position of the first EGR valve. Responsive to a first degradation condition of the first EGR valve, the control unit adjusts the position of the second EGR valve based on the target amount and based on a pressure of the first exhaust manifold, and responsive to a second degradation condition of the first EGR valve, adjusts the position of the second EGR valve based on the target amount.
    Type: Application
    Filed: February 17, 2016
    Publication date: June 9, 2016
    Applicant: General Electric Company
    Inventors: Dipankar Deb, Manthram Sivasubramaniam, Prashant Srinivasan, Sharath Sridhar Aramanekoppa, Prem Kumar Patchaikani, Sachin Shivajirao Kulkarni, Sebastian Walter Freund, Jassin Marcel Fritz, Georgios Bikas, James Henry Yager, Shashi Kiran