Patents by Inventor Premchandran H. Ramiya
Premchandran H. Ramiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250011359Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N-x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: ApplicationFiled: January 5, 2024Publication date: January 9, 2025Inventor: Premchandran H. Ramiya
-
Publication number: 20240150391Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N-x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: ApplicationFiled: June 7, 2023Publication date: May 9, 2024Inventor: Premchandran H. Ramiya
-
Patent number: 11739114Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: GrantFiled: March 16, 2022Date of Patent: August 29, 2023Assignee: Geron CorporationInventor: Premchandran H. Ramiya
-
Publication number: 20220306676Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: ApplicationFiled: March 16, 2022Publication date: September 29, 2022Inventor: Premchandran H. Ramiya
-
Patent number: 11441144Abstract: Aspects of the disclosure include methods for the preparation of a polynucleotide. In some embodiments, the method includes contacting a first polynucleotide composition including: a polynucleotide having a sequence of 7 or more nucleoside subunits and at least two of the nucleoside subunits are joined by a N3??P5? thiophosphoramidate inter-subunit linkage; and non-target synthetic products and reagents; with a multivalent cation salt to precipitate a polynucleotide salt including at least one multivalent cation counterion; and separating the polynucleotide salt from the contacted first polynucleotide composition to produce a second polynucleotide composition including the polynucleotide salt. In certain embodiments, the method further includes contacting the polynucleotide salt with a reverse phase chromatography support; and eluting from the chromatography support a third polynucleotide composition including the polynucleotide.Type: GrantFiled: July 10, 2020Date of Patent: September 13, 2022Assignee: Geron CorporationInventor: Premchandran H. Ramiya
-
Patent number: 11299511Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: GrantFiled: September 14, 2017Date of Patent: April 12, 2022Assignee: Geron CorporationInventor: Premchandran H. Ramiya
-
Publication number: 20200339975Abstract: Aspects of the disclosure include methods for the preparation of a polynucleotide. In some embodiments, the method includes contacting a first polynucleotide composition including: a polynucleotide having a sequence of 7 or more nucleoside subunits and at least two of the nucleoside subunits are joined by a N3??P5? thiophosphoramidate inter-subunit linkage; and non-target synthetic products and reagents; with a multivalent cation salt to precipitate a polynucleotide salt including at least one multivalent cation counterion; and separating the polynucleotide salt from the contacted first polynucleotide composition to produce a second polynucleotide composition including the polynucleotide salt. In certain embodiments, the method further includes contacting the polynucleotide salt with a reverse phase chromatography support; and eluting from the chromatography support a third polynucleotide composition including the polynucleotide.Type: ApplicationFiled: July 10, 2020Publication date: October 29, 2020Inventor: Premchandran H. Ramiya
-
Patent number: 10745687Abstract: Aspects of the disclosure include methods for the preparation of a polynucleotide. In some embodiments, the method includes contacting a first polynucleotide composition including: a polynucleotide having a sequence of 7 or more nucleoside subunits and at least two of the nucleoside subunits are joined by a N3??P5? thiophosphoramidate inter-subunit linkage; and non-target synthetic products and reagents; with a multivalent cation salt to precipitate a polynucleotide salt including at least one multivalent cation counterion; and separating the polynucleotide salt from the contacted first polynucleotide composition to produce a second polynucleotide composition including the polynucleotide salt. In certain embodiments, the method further includes contacting the polynucleotide salt with a reverse phase chromatography support; and eluting from the chromatography support a third polynucleotide composition including the polynucleotide.Type: GrantFiled: April 21, 2016Date of Patent: August 18, 2020Assignee: Geron CorporationInventor: Premchandran H. Ramiya
-
Patent number: 10392418Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: GrantFiled: September 14, 2017Date of Patent: August 27, 2019Assignee: Geron CorporationInventor: Premchandran H. Ramiya
-
Publication number: 20180280413Abstract: The present invention relates to methods and compositions for increasing telomerase activity in cells. Such compositions include pharmaceutical formulations. The methods and compositions are useful for treating diseases subject to treatment by an increase in telomerase activity in cells or tissue of a patient. They are also useful for enhancing replicative capacity of cells in culture, as in ex vivo cell therapy and for enhancing proliferation of stem and progenitor cells.Type: ApplicationFiled: October 13, 2017Publication date: October 4, 2018Applicant: Telomerase Activation Sciences, Inc.Inventors: Calvin Bruce HARLEY, Soo-Peang KHOR, Mahesh RAMASESHAN, Premchandran H. RAMIYA, Zhu Z. PIROT, Steven FAUCE, Tong LIN
-
Patent number: 9913851Abstract: The present invention relates to methods and compositions for increasing telomerase activity in cells. Such compositions include pharmaceutical formulations. The methods and compositions are useful for treating diseases subject to treatment by an increase in telomerase activity in cells or tissue of a patient. They are also useful for enhancing replicative capacity of cells in culture, as in ex vivo cell therapy and for enhancing proliferation of stem and progenitor cells.Type: GrantFiled: December 10, 2015Date of Patent: March 13, 2018Assignee: TELOMERASE ACTIVATION SCIENCES, INC.Inventors: Calvin Bruce Harley, Soo-Peang Khor, Mahesh Ramaseshan, Premchandran H. Ramiya, Zhu Z. Pirot, Steven Fauce, Tong Lin
-
Publication number: 20180016294Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: ApplicationFiled: September 14, 2017Publication date: January 18, 2018Inventor: Premchandran H. Ramiya
-
Publication number: 20180016293Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: ApplicationFiled: September 14, 2017Publication date: January 18, 2018Inventor: Premchandran H. Ramiya
-
Patent number: 9796747Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: GrantFiled: April 29, 2015Date of Patent: October 24, 2017Assignee: Geron CorporationInventor: Premchandran H. Ramiya
-
Publication number: 20160318973Abstract: The present invention relates to methods and compositions for increasing telomerase activity in cells. Such compositions include pharmaceutical formulations. The methods and compositions are useful for treating diseases subject to treatment by an increase in telomerase activity in cells or tissue of a patient. They are also useful for enhancing replicative capacity of cells in culture, as in ex vivo cell therapy and for enhancing proliferation of stem and progenitor cells.Type: ApplicationFiled: December 10, 2015Publication date: November 3, 2016Inventors: Calvin Bruce HARLEY, Soo-Peang KHOR, Mahesh RAMASESHAN, Premchandran H. RAMIYA, Zhu Z. PIROT, Steven FAUCE, Tong LIN
-
Publication number: 20160312227Abstract: Aspects of the disclosure include methods for the preparation of a polynucleotide. In some embodiments, the method includes contacting a first polynucleotide composition including: a polynucleotide having a sequence of 7 or more nucleoside subunits and at least two of the nucleoside subunits are joined by a N3??P5? thiophosphoramidate inter-subunit linkage; and non-target synthetic products and reagents; with a multivalent cation salt to precipitate a polynucleotide salt including at least one multivalent cation counterion; and separating the polynucleotide salt from the contacted first polynucleotide composition to produce a second polynucleotide composition including the polynucleotide salt. In certain embodiments, the method further includes contacting the polynucleotide salt with a reverse phase chromatography support; and eluting from the chromatography support a third polynucleotide composition including the polynucleotide.Type: ApplicationFiled: April 21, 2016Publication date: October 27, 2016Inventor: Premchandran H. Ramiya
-
Patent number: 9403866Abstract: The present invention relates to methods and compositions for increasing telomerase activity in cells. Such compositions include pharmaceutical formulations. The methods and compositions are useful for treating diseases subject to treatment by an increase in telomerase activity in cells or tissue of a patient. They are also useful for enhancing replicative capacity of cells in culture, as in ex vivo cell therapy and for enhancing proliferation of stem and progenitor cells.Type: GrantFiled: July 8, 2013Date of Patent: August 2, 2016Assignee: TELOMERASE ACTIVATION SCIENCES, INC.Inventors: Calvin Bruce Harley, Soo-Peang Khor, Mahesh Ramaseshan, Premchandran H. Ramiya, Zhu Z. Pirot, Steven Fauce, Tong Lin
-
Publication number: 20150337314Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.Type: ApplicationFiled: April 29, 2015Publication date: November 26, 2015Inventor: Premchandran H. Ramiya
-
Publication number: 20140088055Abstract: The present invention relates to methods and compositions for increasing telomerase activity in cells. Such compositions include pharmaceutical formulations. The methods and compositions are useful for treating diseases subject to treatment by an increase in telomerase activity in cells or tissue of a patient. They are also useful for enhancing replicative capacity of cells in culture, as in ex vivo cell therapy and for enhancing proliferation of stem and progenitor cells.Type: ApplicationFiled: July 8, 2013Publication date: March 27, 2014Applicant: TELOMERASE ACTIVATION SCIENCES, INC.Inventors: Calvin Bruce HARLEY, Soo-Peang KHOR, Mahesh RAMASESHAN, Premchandran H. RAMIYA, Zhu Z. PIROT, Steven FAUCE, Tong LIN
-
Publication number: 20030055297Abstract: A process for the preparation of neuraminidase inhibitors having structural formula (28) 1Type: ApplicationFiled: April 3, 2002Publication date: March 20, 2003Inventors: Steven J. Wittenberger, Lakshmi Bhagavatula, David A. DeGoey, John DeMattei, Ashok K. Gupta, David R. Hill, Sukumar Manna, Maureen Ann McLaughlin, Paul J. Nichols, Premchandran H. Ramiya, Michael W. Rasmussen, Zhenping Tian