Patents by Inventor Premkumar JAYARAMAN

Premkumar JAYARAMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220145249
    Abstract: The invention relates to a method of altering a differentiation status of a stem cell by modulating the expression of one or more differentiation factors with a nuclease-deactivated Cas9 (dCas9) fusion protein comprising dCas9 and a transcriptional activator. The method may further include a guide RNA (gRNA) and an activator module comprising RNA-binding protein binding capable of binding to the gRNA. In one embodiment, the dCas9 fusion protein comprises dCas9 and VP64 while the activator module comprises MS2 coat protein and p65. The one or more differentiation factors may comprise PAX6, MITF and OTX2 for differentiation of pluripotent stem cell into retinal pigment epithelium (RPE). Also disclosed are cells comprising the dCas9 fusion protein, gRNA, kits, and method of treating a disease thereof.
    Type: Application
    Filed: April 10, 2020
    Publication date: May 12, 2022
    Inventors: Premkumar Jayaraman, Kah Weng Steve Oh
  • Patent number: 10435697
    Abstract: The present invention relates to a recombinant expression system comprising at least: (i) a first nucleotide sequence encoding for at least one protein of a quorum sensing system capable of detecting the presence, amount or both of a microorganism of interest by forming a complex with a marker molecule indicating the presence of said microorganism; (ii) a second nucleotide sequence encoding for at least one antimicrobial peptide, wherein the at least one antimicrobial peptide is effective against the microorganism of interest detected by the at least one protein encoded by the first nucleotide sequence, (iii) a third nucleotide sequence encoding for a genetic inverter that inhibits expression of the second nucleotide sequence, wherein the genetic inverter is under control of an inducible promoter and wherein the inducible promoter is induced if the complex of the at least one protein encoded by the first nucleotide sequence and the marker molecule indicating the presence of said microorganism is below a thres
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: October 8, 2019
    Assignee: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Chueh Loo Poh, Premkumar Jayaraman, Maciej Bartosz Holowko
  • Publication number: 20170335333
    Abstract: The present invention relates to a recombinant expression system comprising at least: (i) a first nucleotide sequence encoding for at least one protein of a quorum sensing system capable of detecting the presence, amount or both of a microorganism of interest by forming a complex with a marker molecule indicating the presence of said microorganism; (ii) a second nucleotide sequence encoding for at least one antimicrobial peptide, wherein the at least one antimicrobial peptide is effective against the microorganism of interest detected by the at least one protein encoded by the first nucleotide sequence, (iii) a third nucleotide sequence encoding for a genetic inverter that inhibits expression of the second nucleotide sequence, wherein the genetic inverter is under control of an inducible promoter and wherein the inducible promoter is induced if the complex of the at least one protein encoded by the first nucleotide sequence and the marker molecule indicating the presence of said microorganism is below a thres
    Type: Application
    Filed: November 3, 2015
    Publication date: November 23, 2017
    Inventors: Chueh Loo Poh, Premkumar Jayaraman, Maciej Bartosz Holowko
  • Publication number: 20170147742
    Abstract: Systems and methods are proposed for synthetic biology design and host cell simulation. In one form, a synthetic biology design system is proposed, comprising a model conversion component configured to: receive genetic circuit data indicative of a user-specified genetic circuit design; identify, from the genetic circuit data, constituent parts of the genetic circuit design, and the connections between the constituent parts; obtain mathematical models corresponding to the constituent parts; and combine the obtained mathematical models into a composite model configured to generate genetic circuit output data based on input data indicative of one or more of: free RNA polymerase concentration, free ribosome concentration and rRNA concentration.
    Type: Application
    Filed: June 19, 2015
    Publication date: May 25, 2017
    Inventors: Premkumar JAYARAMAN, Chueh Loo POH, Hui Juan WANG