Patents by Inventor Pritha Choudhury

Pritha Choudhury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230330788
    Abstract: A lead-free, antimony-free tin solder which is reliable at high temperatures and comprises from 3.5 to 4.5 wt.% of silver, 2.5 to 4 wt.% of bismuth, 0.3 to 0.8 wt.% of copper, 0.03 to 1 wt.% nickel, 0.005 to 1 wt.% germanium, and a balance of tin, together with any unavoidable impurities.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 19, 2023
    Inventors: Pritha Choudhury, Morgana De Avila Ribas, Sutapa Mukherjee, Anil Kumar, Siuli Sarkar, Ranjit Pandher, Ravi Bhatkal, Bawa Singh
  • Publication number: 20220324063
    Abstract: A lead-free solder alloy comprising: from 2.5 to 5 wt. % silver; from 0.01 to 5 wt. % bismuth; from 1 to 7 wt. % antimony; from 0.01 to 2 wt. % copper; one or more of: up to 6 wt. % indium, up to 0.5 wt. % titanium, up to 0.5 wt. % germanium, up to 0.5 wt. % rare earths, up to 0.5 wt. % cobalt, up to 5.0 wt. % aluminium, up to 5.0 wt. % silicon, up to 0.5 wt. % manganese, up to 0.5 wt. % chromium, up to 0.5 wt. % iron, up to 0.5 wt. % phosphorus, up to 0.5 wt. % gold, up to 1 wt. % gallium, up to 0.5 wt. % tellurium, up to 0.5 wt. % selenium, up to 0.5 wt. % calcium, up to 0.5 wt. % vanadium, up to 0.5 wt. % molybdenum, up to 0.5 wt. % platinum, and up 0 to 0.5 wt. % magnesium; optionally up to 0.5 wt. % nickel; and the balance tin together with any unavoidable impurities.
    Type: Application
    Filed: August 28, 2020
    Publication date: October 13, 2022
    Inventors: Pritha CHOUDHURY, Morgana RIBAS, Anil KUMAR, Raghu R. RANGARAJU, Siuli SARKAR
  • Patent number: 11411150
    Abstract: Improved electrical and thermal properties of solder alloys are achieved by the use of micro-additives in solder alloys to engineer the electrical and thermal properties of the solder alloys and the properties of the reaction layers between the solder and the metal surfaces. The electrical and thermal conductivity of alloys and that of the reaction layers between the solder and the -metal surfaces can be controlled over a wide range of temperatures. The solder alloys produce stable microstructures wherein such stable microstructures of these alloys do not exhibit significant changes when exposed to changes in temperature, compared to traditional interconnect materials.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 9, 2022
    Assignee: Alpha Assembly Solutions Inc.
    Inventors: Morgana de Avila Ribas, Pritha Choudhury, Siuli Sarkar, Ranjit Pandher, Nicholas G Herrick, Amit Patel, Ravindra M Bhatkal, Bawa Singh
  • Patent number: 11090768
    Abstract: A lead-free, antimony-free tin solder which is reliable at high temperatures and comprises up to 10 wt % Ag, up to 10 wt % Bi, up to 3 wt % Cu, other optional additives, balance tin, and unavoidable impurities.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: August 17, 2021
    Assignee: ALPHA ASSEMBLY SOLUTIONS INC.
    Inventors: Pritha Choudhury, Morgana De Avila Ribas, Sutapa Mukherjee, Anil Kumar, Siuli Sarkar, Ranjit Pandher, Ravi Bhatkal, Bawa Singh
  • Patent number: 10821557
    Abstract: Lead-free solder alloys are described that exhibit favorable high temperature mechanical reliability and thermal fatigue resistance, and are typically capable of withstanding operational temperatures of at least 150° C., for example up to 175° C. The alloys may exhibit improved high temperature mechanical properties compared to the conventional Sn—Ag—Cu and Pb5Sn2.5Ag. The solder may be in the form of a bar, a stick, a solid or flux cored wire, a foil or strip, a film, a preform, or a powder or paste (i.e., a powder plus flux blend), or solder spheres for use in ball grid array joints or chip scale packages, or other pre-formed solder pieces, or a reflowed or solidified solder joint, or pre-applied on any solderabie material such as a copper ribbon.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: November 3, 2020
    Assignee: Alpha Assembly Solutions Inc.
    Inventors: Morgana De Avila Ribas, Suresh Telu, Pritha Choudhury, Anil K. N. Kumar, Siuli Sarkar
  • Publication number: 20190389012
    Abstract: Lead-free solder alloys are described that exhibit favorable high temperature mechanical reliability and thermal fatigue resistance, and are typically capable of withstanding operational temperatures of at least 150° C., for example up to 175° C. The alloys may exhibit improved high temperature mechanical properties compared to the conventional Sn—Ag—Cu and Pb5Sn2.5Ag. The solder may be in the form of a bar, a stick, a solid or flux cored wire, a foil or strip, a film, a preform, or a powder or paste (i.e., a powder plus flux blend), or solder spheres for use in ball grid array joints or chip scale packages, or other pre-formed solder pieces, or a reflowed or solidified solder joint, or pre-applied on any solderabie material such as a copper ribbon.
    Type: Application
    Filed: May 2, 2017
    Publication date: December 26, 2019
    Inventors: Morgana De Avila Ribas, Suresh Telu, Pritha Choudhury, Anil K.N. Kumar, Siuli Sarkar
  • Patent number: 10322471
    Abstract: A lead-free, antimony-free solder alloy_suitable for use in electronic soldering applications. The solder alloy comprises (a) from 1 to 4 wt. % silver; (b) from 0.5 to 6 wt. % bismuth; (c) from 3.55 to 15 wt. % indium, (d) 3 wt. % or less of copper; (e) one or more optional elements and the balance tin, together with any unavoidable impurities.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: June 18, 2019
    Assignee: Alpha Assembly Solutions Inc.
    Inventors: Pritha Choudhury, Morgana De Avila Ribas, Sutapa Mukherjee, Siuli Sarkar, Ranjit Pandher, Ravindra Bhatkal, Bawa Singh
  • Publication number: 20190157535
    Abstract: Improved electrical and thermal properties of solder alloys are achieved by the use of micro-additives in solder alloys to engineer the electrical and thermal properties of the solder alloys and the properties of the reaction layers between the solder and the metal surfaces. The electrical and thermal conductivity of alloys and that of the reaction layers between the solder and the -metal surfaces can be controlled over a wide range of temperatures. The solder alloys produce stable microstructures wherein such stable microstructures of these alloys do not exhibit significant changes when exposed to changes in temperature, compared to traditional interconnect materials.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Inventors: Morgana de Avila Ribas, Pritha Choudhury, Siuli Sarkar, Ranjit Pandher, Nicholas G. Herrick, Amit Patel, Ravindra M. Bhatkal, Bawa Singh
  • Publication number: 20180102464
    Abstract: Improved electrical and thermal properties of solder alloys are achieved by the use of micro-additives in solder alloys to engineer the electrical and thermal properties of the solder alloys and the properties of the reaction layers between the solder and the metal surfaces. The electrical and thermal conductivity of alloys and that of the reaction layers between the solder and the -metal surfaces can be controlled over a wide range of temperatures. The solder alloys produce stable microstructures wherein such stable microstructures of these alloys do not exhibit significant changes when exposed to changes in temperature, compared to traditional interconnect materials.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 12, 2018
    Inventors: Morgana de Avila Ribas, Pritha Choudhury, Siuli Sarkar, Ranjit Pandher, Nicholas G. Herrick, Amit Patel, Ravindra M Bhatkal, Bawa Singh
  • Publication number: 20170197281
    Abstract: A lead-free, antimony-free solder alloy_suitable for use in electronic soldering applications. The solder alloy comprises (a) from 1 to 4 wt. % silver; (b) from 0.5 to 6 wt. % bismuth; (c) from 3.55 to 15 wt. % indium, (d) 3 wt. % or less of copper; (e) one or more optional elements and the balance tin, together with any unavoidable impurities.
    Type: Application
    Filed: July 15, 2015
    Publication date: July 13, 2017
    Inventors: Pritha Choudhury, Morgana De Avila Ribas, Sutapa Mukherjee, Siuli Sarkar, Ranjit Pandher, Ravindra Bhatkal, Bawa Singh
  • Publication number: 20160023309
    Abstract: A lead-free, antimony-free tin solder which is reliable at high temperatures and comprises from 3.5 to 4.5 wt. % of silver, 2.5 to 4 wt. % of bismuth, 0.3 to 0.8 wt. % of copper, 0.03 to 1 wt. % nickel, 0.005 to 1 wt. % germanium, and a balance of tin, together with any unavoidable impurities.
    Type: Application
    Filed: October 8, 2015
    Publication date: January 28, 2016
    Applicant: ALPHA METALS, INC.
    Inventors: Pritha Choudhury, Morgana De Avila Ribas, Sutapa Mukherjee, Anil Kumar, Siuli Sarkar, Ranjit Pandher, Ravi Bhatkal, Bawa Singh
  • Publication number: 20150266137
    Abstract: A lead-free, antimony-free tin solder which is reliable at high temperatures and comprises from 3.5 to 4.5 wt. % of silver, 2.5 to 4 wt. % of bismuth, 0.3 to 0.8 wt. % of copper, 0.03 to 1 wt. % nickel, 0.005 to 1 wt. % germanium, and a balance of tin, together with any unavoidable impurities.
    Type: Application
    Filed: October 9, 2013
    Publication date: September 24, 2015
    Applicant: ALPHA METALS, INC.
    Inventors: Pritha Choudhury, Morgana De Avila Ribas, Sutapa Mukherjee, Anil Kumar, Siuli Sarkar, Ranjit Pandher, Ravi Bhatkal, Bawa Singh
  • Publication number: 20150224604
    Abstract: A lead-free, antimony-free tin solder which is reliable at high temperatures and comprises up to 10 wt % Ag, up to 10 wt % Bi, up to 3 wt % Cu, other optional additives, balance tin, and unavoidable impurities.
    Type: Application
    Filed: April 28, 2015
    Publication date: August 13, 2015
    Applicant: ALPHA METALS, INC.
    Inventors: Pritha Choudhury, Morgana De Avila Ribas, Sutapa Mukherjee, Anil Kumar, Siuli Sarkar, Ranjit Pandher, Ravi Bhatkal, Bawa Singh