Patents by Inventor Priti Pharkya

Priti Pharkya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11525149
    Abstract: A non-naturally occurring eukaryotic or prokaryotic organism includes one or more gene disruptions occurring in genes encoding enzymes imparting increased fumarate, malate or acrylate production in the organism when the gene disruption reduces an activity of the enzyme. The one or more gene disruptions confers increased production of acrylate onto the organism. Organisms that produce acrylate have an acrylate pathway that at least one exogenous nucleic acid encoding an acrylate pathway enzyme expressed in a sufficient amount to produce acrylate, the acrylate pathway comprising a decarboxylase. Methods of producing fumarate, malate or acrylate include culturing these organisms.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: December 13, 2022
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Anthony P. Burgard, Priti Pharkya
  • Publication number: 20220348932
    Abstract: The invention provides non-naturally occurring microbial organisms having a formaldehyde fixation pathway, a formate assimilation pathway, and/or a methanol metabolic pathway in combination with a fatty alcohol, fatty aldehyde, fatty acid or isopropanol pathway, wherein the microbial organisms selectively produce a fatty alcohol, fatty aldehyde or fatty acid of a specified length or isopropanol. The microbial organisms provided advantageously enhance the production of substrates and/or pathway intermediates for the production of chain length specific fatty alcohols, fatty aldehydes, fatty acids or isopropanol. In some aspects, the microbial organisms of the invention have select gene disruptions or enzyme attenuations that increase production of fatty alcohols, fatty aldehydes or fatty acids. The invention additionally provides methods of using the above microbial organisms to produce a fatty alcohol, a fatty aldehyde, a fatty acid or isopropanol.
    Type: Application
    Filed: November 1, 2021
    Publication date: November 3, 2022
    Inventors: Robin E. Osterhout, Anthony P. Burgard, Priti Pharkya, Stefan Andrae
  • Publication number: 20220340913
    Abstract: The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
    Type: Application
    Filed: March 9, 2022
    Publication date: October 27, 2022
    Inventors: Anthony P. Burgard, Priti Pharkya, Robin E. Osterhout
  • Patent number: 11447804
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as adipate, 6-aminocaproate, hexamethylenediamine or caprolactam. Also provided herein are methods for using such an organism to produce adipate, 6-aminocaproate, hexamethylenediamine or caprolactam.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: September 20, 2022
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Publication number: 20220290192
    Abstract: A non-naturally occurring microbial organism includes a microbial organism having a 1,3-butanediol (1,3-BDO) pathway having at least one exogenous nucleic acid encoding a 1,3-BDO pathway enzyme expressed in a sufficient amount to produce 1,3-BDO.
    Type: Application
    Filed: October 21, 2021
    Publication date: September 15, 2022
    Inventors: Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Priti Pharkya
  • Patent number: 11441128
    Abstract: Described herein are fusion proteins including methanol dehydrogenase (MeDH) and at least one other polypeptide such as 3-hexulose-6-phosphate dehydrogenase (HPS) or 6-phospho-3-hexuloisomerase (PHI), such as DHAS synthase or fructose-6-Phosphate aldolase or such as DHA synthase or DHA kinase. In a localized manner, the fusion protein can promote the conversion of methanol to formaldehyde and then to a ketose phosphate such as hexulose 6-phosphate or then to DHA and G3P. When expressed in cells, the fusion proteins can promote methanol uptake and rapid conversion to the ketose phosphate or to the DHA and D3P, which in turn can be used in a pathway for the production of a desired bioproduct. Beneficially, the rapid conversion to the ketose phosphate or to the DHA and G3P can avoid the undesirable accumulation of formaldehyde in the cell.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: September 13, 2022
    Assignee: Genomatica, Inc.
    Inventors: Nelson R. Barton, Jingyi Li, Joseph R. Warner, Priti Pharkya
  • Publication number: 20220220511
    Abstract: Provided herein are non-naturally occurring microbial organisms having a formaldehyde fixation pathway and a formate assimilation pathway, which can further include a methanol metabolic pathway, a methanol oxidation pathway, a hydrogenase and/or a carbon monoxide dehydrogenase. These microbial organisms can further include a butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol.
    Type: Application
    Filed: August 4, 2021
    Publication date: July 14, 2022
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Priti PHARKYA, Stefan ANDRAE
  • Patent number: 11384340
    Abstract: Described herein are non-natural NAD+-dependent alcohol dehydrogenases (ADHs) capable of at least two fold greater conversion of methanol or ethanol to formaldehyde or acetaldehyde, respectively, as compared to its unmodified counterpart. Nucleic acids encoding the non-natural alcohol dehydrogenases, as well as expression constructs including the nucleic acids, and engineered cells comprising the nucleic acids or expression constructs are described. Also described are engineered cells expressing a non-natural NAD+-dependent alcohol dehydrogenase, optionally include one or more additional metabolic pathway transgene(s), methanol metabolic pathway genes, target product pathway genes, cell culture compositions including the cells, methods for promoting production of the target product or intermediate thereof from the cells, compositions including the target product or intermediate, and products made from the target product or intermediate.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: July 12, 2022
    Assignee: Genomatica, Inc.
    Inventors: Stefan Andrae, Michael Patrick Kuchinskas, Jingyi Li, Harish Nagarajan, Priti Pharkya
  • Patent number: 11371063
    Abstract: The invention provides non-naturally occurring microbial organisms containing butadiene or 2,4-pentadienoate pathways comprising at least one exogenous nucleic acid encoding a butadiene or 2,4-pentadienoate pathway enzyme expressed in a sufficient amount to produce butadiene or 2,4-pentadienoate. The organism can further contain a hydrogen synthesis pathway. The invention additionally provides methods of using such microbial organisms to produce butadiene or 2,4-pentadienoate by culturing a non-naturally occurring microbial organism containing butadiene or 2,4-pentadienoate pathways as described herein under conditions and for a sufficient period of time to produce butadiene or 2,4-pentadienoate. Hydrogen can be produced together with the production of butadiene or 2,4-pentadienoate.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: June 28, 2022
    Assignee: Genomatica, Inc.
    Inventors: Priti Pharkya, Anthony P. Burgard, Mark J. Burk
  • Patent number: 11293026
    Abstract: The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: April 5, 2022
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Priti Pharkya, Robin E. Osterhout
  • Publication number: 20220056488
    Abstract: The invention provides non-naturally occurring microbial organisms having a toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene pathway. The invention additionally provides methods of using such organisms to produce toluene, benzene, p-toluate, terephthalate, (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate, (2-hydroxy-4-oxobutoxy)phosphonate, benzoate, styrene, 2,4-pentadienoate, 3-butene-1ol or 1,3-butadiene.
    Type: Application
    Filed: April 7, 2021
    Publication date: February 24, 2022
    Inventors: Robin E. Osterhout, Anthony P. Burgard, Priti Pharkya, Mark J. Burk
  • Publication number: 20220025411
    Abstract: The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
    Type: Application
    Filed: March 5, 2021
    Publication date: January 27, 2022
    Inventors: Mark J. Burk, Anthony P. Burgard, Jun Sun, Robin E. Osterhout, Priti Pharkya
  • Patent number: 11208673
    Abstract: The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 28, 2021
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya
  • Publication number: 20210363556
    Abstract: The invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone. The invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
    Type: Application
    Filed: December 11, 2020
    Publication date: November 25, 2021
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya, Mark J. Burk
  • Patent number: 11180780
    Abstract: A non-naturally occurring microbial organism includes a microbial organism having a 1,3-butanediol (1,3-BDO) pathway having at least one exogenous nucleic acid encoding a 1,3-BDO pathway enzyme expressed in a sufficient amount to produce 1,3-BDO.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 23, 2021
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Priti Pharkya
  • Publication number: 20210332393
    Abstract: The invention provides non-naturally occurring microbial organisms containing enzymatic pathways and/or metabolic modifications for enhancing carbon flux through acetyl-CoA. In some embodiments, the microbial organisms of the invention having such pathways also include pathways for generating reducing equivalents, formaldehyde fixation and/or formate assimilation. The enhanced carbon flux through acetyl-CoA, in combination with pathways for generating reducing equivalents, formaldehyde fixation and/or formate assimilation can, in some embodiments, be used for production of a bioderived compound. Accordingly, in some embodiments, the microbial organisms of the invention can include a pathway capable of producing a bioderived compound of the invention.
    Type: Application
    Filed: October 6, 2020
    Publication date: October 28, 2021
    Inventors: Robin E. Osterhout, Anthony P. Burgard, Priti Pharkya, Stefan Andrae
  • Publication number: 20210277426
    Abstract: Disclosed are methods and engineered microorganisms that enhance or improve the production of crotyl alcohol. The engineered microorganisms include genetic modifications in alcohol dehydrogenase, alkene reductase or both enzymatic activities. By such genetic modifications, a crotyl alcohol production pathway is provided or improved.
    Type: Application
    Filed: November 19, 2020
    Publication date: September 9, 2021
    Inventors: Stephanie J. Culler, Nicholas Eakley, Kevin Gregory Hoff, Robin E. Osterhout, Priti Pharkya, Erik C. Ralph, Stephen J. Van Dien
  • Patent number: 11085015
    Abstract: The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate or related products using the microbial organisms.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: August 10, 2021
    Assignee: Genomatica, Inc.
    Inventors: Priti Pharkya, Anthony P. Burgard, Stephen J. Van Dien, Robin E. Osterhout, Mark J. Burk, John D. Trawick, Michael P. Kuchinskas, Brian Steer
  • Publication number: 20210238609
    Abstract: Provided herein are non-naturally occurring microbial organisms having a FaldFP, a FAP and/or metabolic modifications which can further include a MMP, a MOP, a hydrogenase and/or a CODH. These microbial organisms can further include a butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 13BDO, CrotOH, MVC or 3-buten-1-ol.
    Type: Application
    Filed: August 31, 2020
    Publication date: August 5, 2021
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya, Stefan Andrae, Ewa Teresa Lis, Carla Risso, John Douglas Trawick
  • Publication number: 20210147883
    Abstract: The invention is directed to a non-naturally occurring microbial organism comprising a first attenuation of a succinyl-CoA synthetase or transferase and at least a second attenuation of a succinyl-CoA converting enzyme or a gene encoding a succinate producing enzyme within a multi-step pathway having a net conversion of succinyl-CoA to succinate.
    Type: Application
    Filed: February 7, 2020
    Publication date: May 20, 2021
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Priti Pharkya, Tae Hoon Yang, Jungik Choi