Patents by Inventor Priya Rangarajan

Priya Rangarajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7541504
    Abstract: The invention relates to methods for improving the octane number of a synthetic naphtha stream and optionally for producing olefins and/or solvents. In one embodiment, the method comprises aromatizing at least a portion of a synthetic naphtha stream to produce an aromatized hydrocarbon stream; and isomerizing at least a portion of the aromatized hydrocarbon stream to produce an isomerized aromatized hydrocarbon stream having a higher octane rating than the synthetic naphtha stream. Alternatively, the method comprises providing at least three synthetic naphtha cuts comprising a C4-C5 stream; a C6-C8 stream and a C9-C11 stream; aromatizing some of the C6-C8 stream to form an aromatized hydrocarbon stream with a higher octane number; steam cracking some of the C6-C8 stream and optionally the C9-C11 stream to form olefins; and selling some portions of C9-C11 stream as solvents. In preferred embodiments, the synthetic naphtha is derived from Fischer-Tropsch synthesis.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: June 2, 2009
    Assignee: ConocoPhillips Company
    Inventors: Priya Rangarajan, Steven R. McDonald, Joe D. Allison, Keith H. Lawson, Oluwaseyi A. Odueyungbo, Doug S. Jack, Rafael L. Espinoza
  • Patent number: 7078008
    Abstract: The present invention includes a process for producing carbon filaments and synthesis gas from a mixture of alkanes, preferably natural gas, comprising converting a first portion of the alkanes, preferably C2+ hydrocarbons, directly to carbon filaments and converting a second portion of the alkanes, preferably methane, to syngas. The natural gas may be separated into a first feed stream comprising ethane, propane, and butane and a second feed stream comprising methane. The first feed stream is fed to a carbon filament CF reactor to produce carbon filaments and hydrogen. The second feed stream is fed to a syngas production reactor to produce syngas. Alternatively, the natural gas is fed to at least one carbon filament reactor that is maintained at an effective temperature to convert C2+ hydrocarbons in the natural gas to carbon filaments and hydrogen, thereby filtering methane from the natural gas.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: July 18, 2006
    Assignee: Conocophillips Company
    Inventors: Joe D. Allison, Sriram Ramani, Priya Rangarajan, Kenneth M. York, Troy L. Amundson, Gary E. Welch
  • Publication number: 20060054865
    Abstract: The invention includes a denatured liquid and a method for making the same. In one embodiment, the method comprises feeding a syngas to a hydrocarbon synthesis reactor, wherein the syngas is reacted to produce a hydrocarbon synthesis product. A naphtha is produced from the hydrocarbon synthesis product and combined with a liquid to denature the liquid. In other embodiments, the denatured liquid comprises ethanol.
    Type: Application
    Filed: September 14, 2004
    Publication date: March 16, 2006
    Applicant: ConocoPhillips Company
    Inventors: Douglas Smith, Keith Lawson, Priya Rangarajan, Oluwaseyi Odueyungbo
  • Publication number: 20060016722
    Abstract: The invention includes a process for producing synthetic middle distillates and synthetic middle distillates produced therefrom. In one embodiment, the process comprises fractionating a hydrocarbon synthesis product to at least generate a light middle distillate, a heavy middle distillate, and a waxy fraction; thermally cracking the waxy fraction; and isomerizing the heavy middle distillate. A synthetic diesel or blending component is formed by the combination of at least a portion of the light middle distillate; at least a portion or fraction of the thermally cracked product; and at least a portion or fraction of the isomerized product. In some embodiments, the hydrocarbon synthesis product and/or the thermally cracked product may be hydrotreated. In other embodiments, a synthetic middle distillate comprises at least two fractions: a light fraction with not more than 10% branched hydrocarbons, and a heavy fraction with at least 30% branched hydrocarbons.
    Type: Application
    Filed: July 7, 2005
    Publication date: January 26, 2006
    Applicant: ConocoPhillips Company
    Inventors: Rafael Espinoza, Keith Lawson, Priya Rangarajan, Robin Cnossen
  • Publication number: 20050126956
    Abstract: The invention relates to methods for improving the octane number of a synthetic naphtha stream and optionally for producing olefins and/or solvents. In one embodiment, the method comprises aromatizing at least a portion of a synthetic naphtha stream to produce an aromatized hydrocarbon stream; and isomerizing at least a portion of the aromatized hydrocarbon stream to produce an isomerized aromatized hydrocarbon stream having a higher octane rating than the synthetic naphtha stream. Alternatively, the method comprises providing at least three synthetic naphtha cuts comprising a C4-C5 stream; a C6-C8 stream and a C9-C11 stream; aromatizing some of the C6-C8 stream to form an aromatized hydrocarbon stream with a higher octane number; steam cracking some of the C6-C8 stream and optionally the C9-C11 stream to form olefins; and selling some portions of C9-C11 stream as solvents. In preferred embodiments, the synthetic naphtha is derived from Fischer-Tropsch synthesis.
    Type: Application
    Filed: February 3, 2005
    Publication date: June 16, 2005
    Applicant: ConocoPhillips Company
    Inventors: Priya Rangarajan, Steven McDonald, Joe Allison, Keith Lawson, Oluwaseyi Odueyungbo, Doug Jack, Rafael Espinoza
  • Patent number: 6875339
    Abstract: The invention relates to methods for improving the octane number of a synthetic naphtha stream and optionally for producing olefins and/or solvents. In one embodiment, the method comprises aromatizing at least a portion of a synthetic naphtha stream to produce an aromatized hydrocarbon stream; and isomerizing at least a portion of the aromatized hydrocarbon stream to produce an isomerized aromatized hydrocarbon stream having a higher octane rating than the synthetic naphtha stream. Alternatively, the method comprises providing at least three synthetic naphtha cuts comprising a C4-C5 stream; a C6-C8 stream and a C9-C11 stream; aromatizing some of the C6-C8 stream to form an aromatized hydrocarbon stream with a higher octane number; steam cracking some of the C6-C8 stream and optionally the C9-C11 stream to form olefins; and selling some portions of C9-C11 stream as solvents. In preferred embodiments, the synthetic naphtha is derived from Fischer-Tropsch synthesis.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: April 5, 2005
    Assignee: ConocoPhillips Company
    Inventors: Priya Rangarajan, Steven R. McDonald, Joe D. Allison, Keith H. Lawson, Oluwaseyi A. Odueyungbo, Doug S. Jack, Rafael L. Espinoza
  • Publication number: 20050042163
    Abstract: Metal loaded carbon filaments and a process for making the same are provided. This process includes forming metal on carbon filaments produced from at least one carbon-containing compound, e.g., an alkane or an alkene. The metal may be formed on surfaces of previously formed carbon filaments by, for example, electroplating, impregnation, or chemical vapor deposition. Alternatively, the carbon filaments and the metal may be formed concurrently, resulting in the metal being incorporated in the carbon filaments. An article of manufacture is also provided that includes a carbon filament having metal disposed thereon. The article of manufacture may be, for example, a high surface area catalyst, an electronic element, and a composite material having enhanced electrical properties.
    Type: Application
    Filed: August 20, 2003
    Publication date: February 24, 2005
    Applicant: ConocoPhillips Company
    Inventors: Joe Allison, Sriram Ramani, Priya Rangarajan
  • Publication number: 20040236164
    Abstract: The invention relates to methods for improving the octane number of a synthetic naphtha stream and optionally for producing olefins and/or solvents. In one embodiment, the method comprises aromatizing at least a portion of a synthetic naphtha stream to produce an aromatized hydrocarbon stream; and isomerizing at least a portion of the aromatized hydrocarbon stream to produce an isomerized aromatized hydrocarbon stream having a higher octane rating than the synthetic naphtha stream. Alternatively, the method comprises providing at least three synthetic naphtha cuts comprising a C4-C5 stream; a C6-C8 stream and a C9-C11 stream; aromatizing some of the C6-C8 stream to form an aromatized hydrocarbon stream with a higher octane number; steam cracking some of the C6-C8 stream and optionally the C9-C11 stream to form olefins; and selling some portions of C9-C11 stream as solvents. In preferred embodiments, the synthetic naphtha is derived from Fischer-Tropsch synthesis.
    Type: Application
    Filed: March 8, 2004
    Publication date: November 25, 2004
    Applicant: ConocoPhillips Company
    Inventors: Priya Rangarajan, Steven R. McDonald, Joe D. Allison, Keith H. Lawson, Oluwaseyi A. Odueyungbo, Doug S. Jack, Rafael L. Espinoza
  • Publication number: 20040062704
    Abstract: The present invention includes a process for producing carbon filaments and synthesis gas from a mixture of alkanes, preferably natural gas, comprising converting a first portion of the alkanes, preferably C2+ hydrocarbons, directly to carbon filaments and converting a second portion of the alkanes, preferably methane, to syngas. The natural gas may be separated into a first feed stream comprising ethane, propane, and butane and a second feed stream comprising methane. The first feed stream is fed to a carbon filament CF reactor to produce carbon filaments and hydrogen. The second feed stream is fed to a syngas production reactor to produce syngas. Alternatively, the natural gas is fed to at least one carbon filament reactor that is maintained at an effective temperature to convert C2+ hydrocarbons in the natural gas to carbon filaments and hydrogen, thereby filtering methane from the natural gas.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 1, 2004
    Applicant: Conoco Inc.
    Inventors: Joe D. Allison, Sriram Ramani, Priya Rangarajan, Kenneth M. York, Troy L. Amundson, Gary E. Welch