Patents by Inventor Priyesh Ranjan
Priyesh Ranjan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12165521Abstract: In some embodiments, a system for resource transportation comprises a routing command subsystem. In some embodiments, the routing command subsystem is configured to be communicably coupled to a first input device at a first location, the first input device configured to determine a first resource factor of a resource at the first location and a location input device associated with a transporter, the transporter configured to transport the resource, the location input device configured to determine a transporter location. In some embodiments, the routing command subsystem is further configured to change a first endpoint of a transporter route to a first alternate location based at least in part on the first resource factor and the transporter location.Type: GrantFiled: August 1, 2023Date of Patent: December 10, 2024Assignee: Vorto Technologies, LLCInventors: Priyesh Ranjan, Samuel Robert McLaughlin
-
Patent number: 12055999Abstract: The reliability of an application is improved by analyzing and implementing changes to application infrastructure that is represented, in some examples, as Infrastructure as Code (“IAC”). The system performs various tests on the infrastructure to determine how the infrastructure responds to failures and whether recovery procedures and monitoring services in place are effective and functioning properly. Various examples provide a measure of infrastructure resiliency that can be used to evaluate potential changes to application infrastructure.Type: GrantFiled: April 29, 2021Date of Patent: August 6, 2024Assignee: Amazon Technologies, Inc.Inventors: Ilia Gilderman, Eran Schitzer, Priyesh Ranjan Tiwari, Oded Sharon, Damodar Shetyo, Shruthi Ramakrishnan, Zachary Adam Bienenfeld, Ben Fedidat, Dmitrij Semionov, Haim Sharabani, Zhifeng Wang
-
Publication number: 20240021083Abstract: In some embodiments, a system for resource transportation comprises a routing command subsystem. In some embodiments, the routing command subsystem is configured to be communicably coupled to a first input device at a first location, the first input device configured to determine a first resource factor of a resource at the first location and a location input device associated with a transporter, the transporter configured to transport the resource, the location input device configured to determine a transporter location. In some embodiments, the routing command subsystem is further configured to change a first endpoint of a transporter route to a first alternate location based at least in part on the first resource factor and the transporter location.Type: ApplicationFiled: August 1, 2023Publication date: January 18, 2024Inventors: Priyesh RANJAN, Samuel Robert MCLAUGHLIN
-
Publication number: 20230342875Abstract: Disclosed systems and methods relate to generating an optimized simulated tour. In some embodiments, a system can include a display device; a memory; and a processor coupled to the memory programmed with executable instructions including: a data collector to receive a transportation load data and a market data; a user interface to collect a user input, the user input including a user profile, a transportation tour parameter, and a current information of the user; a data filter to filter the transportation load data and the market data based on the user input; a network model engine to generate a network model based on the filtered transportation load data and the filtered market data; a simulation engine to: simulate the transportation tour based on the network model, and automatically select a simulated tour based on a simulated factor; and the user interface to display the selected simulated tour.Type: ApplicationFiled: April 17, 2023Publication date: October 26, 2023Applicant: Vorto Technologies, LLCInventors: Priyesh RANJAN, Samuel Robert MCLAUGHLIN
-
Patent number: 11756428Abstract: In some embodiments, a system for resource transportation comprises a routing command subsystem. In some embodiments, the routing command subsystem is configured to be communicably coupled to a first input device at a first location, the first input device configured to determine a first resource factor of a resource at the first location and a location input device associated with a transporter, the transporter configured to transport the resource, the location input device configured to determine a transporter location. In some embodiments, the routing command subsystem is further configured to change a first endpoint of a transporter route to a first alternate location based at least in part on the first resource factor and the transporter location.Type: GrantFiled: April 16, 2019Date of Patent: September 12, 2023Assignee: Vorto Technologies, LLCInventors: Priyesh Ranjan, Samuel Robert McLaughlin
-
Publication number: 20220171667Abstract: The reliability of an application is improved by analyzing and implementing changes to application infrastructure that is represented, in some examples, as Infrastructure as Code (“IAC”). The system performs various tests on the infrastructure to determine how the infrastructure responds to failures and whether recovery procedures and monitoring services in place are effective and functioning properly. Various examples provide a measure of infrastructure resiliency that can be used to evaluate potential changes to application infrastructure.Type: ApplicationFiled: April 29, 2021Publication date: June 2, 2022Inventors: Ilia Gilderman, Eran Schitzer, Priyesh Ranjan Tiwari, Oded Sharon, Damodar Shetyo, Shruthi Ramakrishnan, Zachary Adam Bienenfeld, Ben Fedidat, Dmitrij Semionov, Haim Sharabani, Zhifeng Wang
-
Patent number: 11029430Abstract: Some aspects of what is described here relate to seismic data analysis techniques. A seismic excitation is generated in a first directional wellbore section in a subterranean region. A seismic response associated with the seismic excitation is detected in a second directional wellbore section in the subterranean region. Seismic response data based on the seismic response are analyzed to identify a location of a fracture treatment injection wellbore in the subterranean region.Type: GrantFiled: June 4, 2014Date of Patent: June 8, 2021Assignee: Halliburton Energy Services, Inc.Inventors: Ronald Glen Dusterhoft, Priyesh Ranjan
-
Patent number: 10683747Abstract: A system includes a set of one or more electromagnetic (EM) field sensors deployed in a borehole formed in a downhole formation, wherein the set of EM field sensors provides sensitivity to EM fields. The system also includes an EM field source that emits an EM field into the downhole formation. The system also includes a data processing system that receives measurements collected by the set of EM field sensors in response to the emitted EM field. The data processing system models the subsurface EM field based on the received measurements and identifies a plurality of flood fronts corresponding to fluid approaching the borehole from the injection wells, and adjusts injection rates to prevent injection fluid breakthrough.Type: GrantFiled: December 31, 2015Date of Patent: June 16, 2020Assignee: Halliburton Energy Services, Inc.Inventors: Priyesh Ranjan, Burkay Donderici, Ahmed Elsayed Fouda
-
Patent number: 10520625Abstract: Some aspects of what is described here relate to seismic data analysis techniques. A seismic excitation is generated in a first directional wellbore section in a subterranean region. A seismic response associated with the seismic excitation is detected in a second directional wellbore section in the subterranean region. A fracture treatment target region in the subterranean region is analyzed based on the seismic response. A fracture propagation model is assessed based on the analysis of the fracture treatment target region. In some cases, the fracture propagation model is assessed in real time during a fracture treatment.Type: GrantFiled: June 4, 2014Date of Patent: December 31, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Harold Grayson Walters, Priyesh Ranjan
-
Patent number: 10495769Abstract: A method of modeling a formation is described. In one aspect of the disclosure, the method includes initiating operation of a reservoir simulator, and, following initiation of operation of the simulator, retrieving formation data from an external data source via a communications network and utilizing the retrieved data as part of the on-going simulation. In certain embodiments, a data deck may be supplied to the simulator before operation of the simulator is initiated. The data deck may include information for establishing a network communications link between the reservoir simulator and an external data server.Type: GrantFiled: April 30, 2012Date of Patent: December 3, 2019Assignee: Landmark Graphics CorporationInventors: Amit Kumar, Priyesh Ranjan
-
Publication number: 20190318629Abstract: In some embodiments, a system for resource transportation comprises a routing command subsystem. In some embodiments, the routing command subsystem is configured to be communicably coupled to a first input device at a first location, the first input device configured to determine a first resource factor of a resource at the first location and a location input device associated with a transporter, the transporter configured to transport the resource, the location input device configured to determine a transporter location. In some embodiments, the routing command subsystem is further configured to change a first endpoint of a transporter route to a first alternate location based at least in part on the first resource factor and the transporter location.Type: ApplicationFiled: April 16, 2019Publication date: October 17, 2019Applicant: HEP ShaleApps, LLCInventors: Priyesh RANJAN, Samuel Robert MCLAUGHLIN
-
Patent number: 10422901Abstract: Some aspects of what is described here relate to seismic data analysis techniques. A seismic excitation is generated in a first directional wellbore section in a subterranean region. A seismic response associated with the seismic excitation is detected in a second directional wellbore section in the subterranean region. Seismic response data based on the seismic response are analyzed to identify geomechanical properties of subterranean rock in a fracture treatment target region in the subterranean region. In some cases, the geomechanical properties include pore pressure, stress, or mechanical properties.Type: GrantFiled: June 4, 2014Date of Patent: September 24, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Harold Grayson Walters, Ronald Glen Dusterhoft, Priyesh Ranjan, Ken Smith, Glenn Robert McColpin
-
Patent number: 10416328Abstract: Some aspects of what is described here relate to seismic profiling techniques. In some implementations, a time-sequence of seismic excitations are generated at seismic source locations in a first directional wellbore section in a subterranean region. Each seismic excitation is generated at a respective time and at a respective subset of the seismic source locations. A time-sequence of seismic responses are detected at one or more seismic sensor locations in a second directional wellbore section in the subterranean region. The time-sequence of seismic responses is associated with the time-sequence of seismic excitations. A fracture treatment of the subterranean region is analyzed based on the time-sequence of seismic responses.Type: GrantFiled: June 4, 2014Date of Patent: September 17, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Harold Grayson Walters, Ronald Glen Dusterhoft, Priyesh Ranjan
-
Patent number: 10415349Abstract: Systems and methods for subsurface secondary and/or tertiary oil recovery optimization based on either a short term, medium term or long term optimization analysis of selected zones, wells, patterns/clusters and/or fields.Type: GrantFiled: October 5, 2012Date of Patent: September 17, 2019Assignee: Landmark Graphics CorporationInventors: Priyesh Ranjan, Sheldon Burt Gorell, Amit Kumar, Alvin Stanley Cullick, Gustavo A. Carvajal, Karelis Alejandra Urrutia, Hasnain Khan, Luigi Saputelli, Hatem Nasr
-
Patent number: 10370940Abstract: Systems and methods for subsurface secondary and/or tertiary oil recovery optimization based on either a short term, medium term or long term optimization analysis of selected zones, wells, patterns/clusters and/or fields.Type: GrantFiled: October 5, 2012Date of Patent: August 6, 2019Assignee: Landmark Graphics CorporationInventors: Priyesh Ranjan, Sheldon Burt Gorell, Amit Kumar, Alvin Stanley Cullick, Gustavo A. Carvajal, Karelis Alejandra Urrutia, Hasnain Khan, Luigi Alfonso Saputelli, Hatem Nasr
-
Patent number: 10370959Abstract: A flow rate sensing system can include an optical waveguide, an optical interrogator that detects optical scatter in the optical waveguide, and an emitter that produces vibration in response to flow, the optical scatter being influenced by the vibration. A method of measuring flow rate can include detecting optical scattering in an optical waveguide, the optical scattering varying in response to changes in vibration produced by an emitter, and the vibration changing in response to the flow rate changing. A well system can include at least one tubular string positioned in a wellbore, multiple locations at which fluid flows between an interior and an exterior of the tubular string, multiple emitters, each of which produces vibration in response to the flow between the interior and the exterior of the tubular string, and an optical waveguide in which optical scatter varies in response to changes in the vibration.Type: GrantFiled: August 20, 2014Date of Patent: August 6, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Mikko Jaaskelainen, Priyesh Ranjan, Nitika Kalia
-
Patent number: 10365136Abstract: An opto-acoustic flowmeter can include an optical waveguide and an emitter that emits acoustic energy in response to flow, the acoustic energy comprising a flow rate dependent parameter. A flow rate measuring method can include configuring an emitter so that flow into or out of a tubular string causes the emitter to emit acoustic energy, arranging an optical line so that the acoustic energy is received by an optical waveguide of the optical line, and detecting optical scatter in the optical waveguide. A well system can include multiple locations where fluid is flowed between an earth formation and a tubular string in a wellbore, multiple emitters that produce an acoustic vibration corresponding to a flow rate of the fluid, an optical line that receives the vibrations, and an optical interrogator that detects optical scatter in an optical waveguide of the line, the scatter being indicative of the vibrations.Type: GrantFiled: August 20, 2014Date of Patent: July 30, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Mikko Jaaskelainen, Priyesh Ranjan, Nitika Kalia
-
Patent number: 10175374Abstract: A seismic excitation is generated in a first directional wellbore section in a subterranean region. A seismic response associated with a seismic excitation is detected by a fiber optic distributed acoustic sensing array in a second directional wellbore section in the subterranean region. A fracture treatment of the subterranean region is analyzed based on the seismic response.Type: GrantFiled: June 4, 2014Date of Patent: January 8, 2019Assignee: Halliburton Energy Services, Inc.Inventors: Ronald Glen Dusterhoft, Harold Grayson Walters, Priyesh Ranjan, Ken Smith, Glenn Robert McColpin
-
Patent number: 10125605Abstract: The use of a distributed fiber optic strain sensor system in horizontal hydraulic fracturing wells to determine several measurements of hydraulic fracture system geometry including number of far-field fractures, hydraulic and propped fracture length, fracture azimuth, and multi-planar fracture complexity.Type: GrantFiled: January 20, 2014Date of Patent: November 13, 2018Assignee: Halliburton Energy Services, Inc.Inventors: Michael J. Mayerhofer, Karn Agarwal, Norman R. Warpinski, Priyesh Ranjan, Glenn McColpin, Mikko Jaaskelainen
-
Patent number: 10100619Abstract: Systems and methods for subsurface secondary and/or tertiary oil recovery optimization based on either a short term, medium term or long term optimization analysis of selected zones, wells, patterns/clusters and/or fields.Type: GrantFiled: August 30, 2013Date of Patent: October 16, 2018Assignee: Landmark Graphics CorporationInventors: Priyesh Ranjan, Sheldon Burt Gorell, Amit Kumar, Alvin Stanley Cullick, Gustavo Carvajal, Karelis Alejandra Urrutia, Hasnain Khan, Luigi Saputelli, Hatem Nasr