Patents by Inventor Pujitha Weerakoon

Pujitha Weerakoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210121701
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Application
    Filed: January 4, 2021
    Publication date: April 29, 2021
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt
  • Patent number: 10912942
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: February 9, 2021
    Assignee: Boston Scientific Neuromoduiation Corporation
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt
  • Publication number: 20200406042
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt, Kiran K. Gururaj
  • Publication number: 20200346019
    Abstract: Improved stimulation circuitry for controlling the stimulation delivered by an implantable stimulator is disclosed. The stimulation circuitry includes memory circuitry that stores pulse programs that define pulse shapes, steering programs that define electrode configurations, and aggregate programs that link a selected pulse program with a selected steering program. The aggregate programs also include an amplitude modulation factor that modulates the amplitude defined by the pulse program. The inclusion of an amplitude modulation factor in the aggregate program allows complex amplitude-modulated waveforms to be produced. Pulse definition circuits in the stimulation circuitry execute aggregate programs to generate stimulation waveforms, which stimulation waveforms can be generated simultaneously by the different pulse definition circuits.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 5, 2020
    Inventors: Philip Leonard Weiss, Pujitha Weerakoon, David Michael Wagenbach
  • Publication number: 20200305744
    Abstract: Sense amplifier circuits particularly useful in sensing neural responses in an Implantable Pulse Generator (IPG) are disclosed. The IPG includes a plurality of electrodes, with one selected as a sensing electrode and another selected as a reference to differentially sense the neural response in a manner that subtracts a common mode voltage (e.g., stimulation artifact) from the measurement. The circuits include a differential amplifier which receives the selected electrodes at its inputs, and comparator circuitries to assess each differential amplifier input to determine whether it is of a magnitude that is consistent with the differential amplifier's input requirements. Based on these determinations, an enable signal is generated which informs whether the output of the differential amplifier validly provides the neural response at any point in time.
    Type: Application
    Filed: March 17, 2020
    Publication date: October 1, 2020
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt
  • Patent number: 10786665
    Abstract: Digital-to-analog converter (DAC) circuitry for providing currents at electrodes of an Implantable Pulse Generator (IPG) is disclosed. The DAC circuitry includes at least one PDAC for sourcing current to the electrodes, and at least one NDAC for sinking current from the electrodes. The PDACs are powered with power supplies VH (the compliance voltage) and Vssh in a high power domain, and the NDACs are powered with power supplies Vcc and ground in a low power domain. VH may change during IPG operation, and Vssh preferably also changes with a fixed difference with respect to VH. Digital control signals to the PDACs are formed (and possibly converted into) the high power domain, and transistors used to build the PDACs are biased in the high power domain, and thus may also change with VH. This permits transistors in the PDACs and NDACs to be made from normal low-voltage logic transistors.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: September 29, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Philip L. Weiss, Pujitha Weerakoon, David M. Wagenbach, Emanuel Feldman, Kiran K. Gururaj
  • Patent number: 10780285
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 22, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt, Kiran K. Gururaj
  • Patent number: 10632300
    Abstract: Improved circuitry for measuring analog values in an implantable pulse generator is disclosed. The measurement circuitry executes instructions that define the timing and parameters of measurements to be taken. The instructions include instructions that are responsive to different types of triggers issued by different pulse definition circuits, which pulse definition circuits generate different stimulation waveforms at different groups of electrodes. The measurement circuitry is configurable to update the groups of electrodes used to deliver stimulation.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: April 28, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: David Michael Wagenbach, Philip Leonard Weiss, Goran N. Marnfeldt, Kiran K. Gururaj, Pujitha Weerakoon
  • Patent number: 10549091
    Abstract: Current generation circuitry for an Implantable Pulse Generator (IPG) is disclosed. The IPG comprises a plurality of PDACs and NDACs for souring currents to electrode nodes. The PDACs and NDACs can be configured as pairs to each provide stimulation in independent timing channels, or the PDACs can be combined and the NDACs can be combined to provide stimulation in a single timing channel. Further, the PDAC or NDAC can provide a plurality of source branch currents each of the same amplitude to the electrodes via a switch matrix, and pulse definition circuitry can be configured to always connect each of the source branch currents to one of the first one or more electrode nodes via the switch matrix.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: February 4, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt, Philip L. Weiss
  • Patent number: 10525253
    Abstract: Digital-to-analog converter (master DAC) circuitry is disclosed that is programmable to set a controlled slew rate for pulses that are otherwise defined as having sharp amplitude transitions. For example, when producing a biphasic pulse, the constant amplitude and duration of first and second pulses phases can be defined and provided to the DAC in traditional fashion. Slew rate control signals control a slew rate DAC within the master DAC, which prescribes a slew rate that will appear at sharp transitions of the defined biphasic pulses, i.e., at the beginning of the first phase, at the transition from the first to the second phase, and at the end of the second phase. The slew rate can vary with the duration or frequency of the pulses, with lower slew rates used with longer durations and/or lower frequencies, and with higher slew rates used with shorter durations and/or higher frequencies.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Pujitha Weerakoon
  • Publication number: 20190099602
    Abstract: An Implantable Pulse Generator (IPG) or External Trial Stimulator (ETS) system is disclosed that is capable of sensing an Evoked Compound Action Potential (ECAP), and (perhaps in conjunction with an external device) is capable of adjusting a stimulation program while keeping a location of a Central Point of Stimulation (CPS) constant. Specifically, one or more features of measured ECAP(s) indicative of its shape and size are determined, and compared to thresholds or ranges to modify the electrode configuration of the stimulation program.
    Type: Application
    Filed: September 19, 2018
    Publication date: April 4, 2019
    Inventors: Rosana Esteller, Goran N. Marnfeldt, Natalie A. Brill, David M. Wagenbach, Pujitha Weerakoon, Jordi Parramon
  • Publication number: 20190083796
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 21, 2019
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt
  • Publication number: 20190083797
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 21, 2019
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt, Kiran K. Gururaj
  • Publication number: 20180104468
    Abstract: Digital-to-analog converter (master DAC) circuitry is disclosed that is programmable to set a controlled slew rate for pulses that are otherwise defined as having sharp amplitude transitions. For example, when producing a biphasic pulse, the constant amplitude and duration of first and second pulses phases can be defined and provided to the DAC in traditional fashion. Slew rate control signals control a slew rate DAC within the master DAC, which prescribes a slew rate that will appear at sharp transitions of the defined biphasic pulses, i.e., at the beginning of the first phase, at the transition from the first to the second phase, and at the end of the second phase. The slew rate can vary with the duration or frequency of the pulses, with lower slew rates used with longer durations and/or lower frequencies, and with higher slew rates used with shorter durations and/or higher frequencies.
    Type: Application
    Filed: September 5, 2017
    Publication date: April 19, 2018
    Inventors: Goran N. Marnfeldt, Pujitha Weerakoon
  • Publication number: 20180071511
    Abstract: Digital-to-analog converter (DAC) circuitry for providing currents at electrodes of an Implantable Pulse Generator (IPG) is disclosed. The DAC circuitry includes at least one PDAC for sourcing current to the electrodes, and at least one NDAC for sinking current from the electrodes. The PDACs are powered with power supplies VH (the compliance voltage) and Vssh in a high power domain, and the NDACs are powered with power supplies Vcc and ground in a low power domain. VH may change during IPG operation, and Vssh preferably also changes with a fixed difference with respect to VH. Digital control signals to the PDACs are formed (and possibly converted into) the high power domain, and transistors used to build the PDACs are biased in the high power domain, and thus may also change with VH. This permits transistors in the PDACs and NDACs to be made from normal low-voltage logic transistors.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 15, 2018
    Inventors: Goran N. Marnfeldt, Philip L. Weiss, Pujitha Weerakoon, David M. Wagenbach, Emanuel Feldman, Kiran K. Gururaj
  • Publication number: 20180071520
    Abstract: An implantable pulse generator (IPG) is disclosed having a plurality of electrode nodes, each electrode node configured to be coupled to an electrode to provide stimulation pulses to a patient's tissue. The IPG includes a digital-to-analog converter configured to amplify a reference current to a first current specified by first control signals; a first resistance configured to receive the first current, wherein a voltage across the first resistance is held to a reference voltage at a first node; a plurality of branches each comprising a second resistance and configured to produce a branch current, wherein a voltage across each second resistance is held to the reference voltage at second nodes; and a switch matrix configurable to selectively couple any branch current to any of the electrode nodes via the second nodes.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 15, 2018
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt, Philip L. Weiss
  • Publication number: 20180071521
    Abstract: Current generation circuitry for an Implantable Pulse Generator (IPG) is disclosed. The IPG comprises a plurality of PDACs and NDACs for souring currents to electrode nodes. The PDACs and NDACs can be configured as pairs to each provide stimulation in independent timing channels, or the PDACs can be combined and the NDACs can be combined to provide stimulation in a single timing channel. Further, the PDAC or NDAC can provide a plurality of source branch currents each of the same amplitude to the electrodes via a switch matrix, and pulse definition circuitry can be configured to always connect each of the source branch currents to one of the first one or more electrode nodes via the switch matrix.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 15, 2018
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt, Philip L. Weiss
  • Publication number: 20180071514
    Abstract: Improved circuitry for measuring analog values in an implantable pulse generator is disclosed. The measurement circuitry executes instructions that define the timing and parameters of measurements to be taken. The instructions include instructions that are responsive to different types of triggers issued by different pulse definition circuits, which pulse definition circuits generate different stimulation waveforms at different groups of electrodes. The measurement circuitry is configurable to update the groups of electrodes used to deliver stimulation.
    Type: Application
    Filed: September 5, 2017
    Publication date: March 15, 2018
    Inventors: David Michael Wagenbach, Philip Leonard Weiss, Goran N. Marnfeldt, Kiran K. Gururaj, Pujitha Weerakoon
  • Patent number: 9494960
    Abstract: A programmable linear voltage regulator and system for programming the regulator that improves the speed, power usage, and stability over conventional linear voltage regulators is disclosed. A controller that has knowledge of the current or expected activation of various loads sends bias control signals to a programmable biasing circuit of an error amplifier in the voltage regulator to adjust the bias current in accordance with the load current the regulator produces or is expected to produce. A look up table associated with the controller can be used to correlate the bias control signals with current or expected load conditions. Programming of the programmable biasing circuit may precede the enablement of a new load condition to ready the voltage regulator to handle the upcoming change in load current.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: November 15, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt
  • Patent number: 9220901
    Abstract: A neurostimulation device capable of being placed between an active stimulation state and an inactive stimulation state and method of using same. The neurostimulation device comprises a plurality of electrical terminals configured for being respectively coupled to a plurality of stimulation electrodes, a first solid-state switching device coupled to a first one of the electrical terminals, a variable power source coupled to the first switching device, and a controller configured for, when the neurostimulation device is in the inactive stimulation state, prompting the variable power source to selectively output a relatively low voltage to place the first switching device into a first open state and a relatively high voltage to place the first switching device into a second open state.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 29, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran Gururaj, Pujitha Weerakoon, Goran N. Marnfeldt, Jordi Parramon, Salomo Murtonen, Emanuel Feldman