Patents by Inventor Pulickel M. Ajayan

Pulickel M. Ajayan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150090607
    Abstract: The present disclosure pertains to methods of protecting a surface (e.g., a metal surface) from corrosion by conformably attaching a hybrid device comprising at least one multilayer energy storage device and at least one energy conversion device.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Charudatta Galande, Neelam Singh, Suman Khatiwada, Pulickel M. Ajayan
  • Publication number: 20150027615
    Abstract: The present invention provides additive manufacturing methods of forming multilayer energy storage devices on a surface by formulating all components of the multilayer energy storage device into liquid compositions and: (1) applying a first liquid current collector composition above the surface to form a first current collector layer above the surface; (2) applying a first liquid electrode composition above the first current collector layer to form a first electrode layer above the first current collector layer; (3) applying a liquid electrically insulating composition above the first electrode layer to form an electrically insulating layer above the first electrode layer; (4) applying a second liquid electrode composition above the electrically insulating layer to form a second electrode layer above the electrically insulating layer; and (5) applying a second liquid current collector composition above the second electrode layer to form a second current collector layer above the second electrode layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 29, 2015
    Applicant: William Marsh Rice University
    Inventors: Neelam Singh, Charudatta Galande, Akshay Mathkar, Leela M. Reedy Arava, Pulickel M. Ajayan, Alexandru Vlad
  • Patent number: 8906984
    Abstract: Metal/metal oxide nanoparticle-embedded polymer films were synthesized in situ wherein the polymerizing agent was utilized for both reduction and polymerization (such as curing). This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the polymer matrix. In some embodiments, additional heating can be utilized to form the nanoparticles embedded in the polymer film.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: December 9, 2014
    Assignee: William Marsh Rice University
    Inventors: Pulickel M. Ajayan, Ashavani Kumar, Anubha Goyal
  • Publication number: 20140315096
    Abstract: In some embodiments, the present disclosure pertains to energy storage compositions that comprise a clay and an ionic liquid. In some embodiments, the clay is a bentonite clay and the ionic liquid is a room temperature ionic liquid (RTIL). In some embodiments, the clay and the ionic liquid are present in the energy storage compositions of the present disclosure in a weight ratio of 1:1. In some embodiments, the ionic liquid further comprises a lithium-containing salt that is dissolved in the ionic liquid. In some embodiments, the energy storage compositions of the present disclosure further comprise a thermoplastic polymer, such as polyurethane. In some embodiments, the thermoplastic polymer constitutes about 10% by weight of the energy storage composition. In some embodiments, the energy storage compositions of the present disclosure are associated with components of energy storage devices, such as electrodes and separators.
    Type: Application
    Filed: February 26, 2014
    Publication date: October 23, 2014
    Applicants: Universidade Federal de Minas Gerais, William Marsh Rice University
    Inventors: Raquel Silveira Borges, Kaushik Kalaga, Marco Tulio Fonseca Rodrigues, Hemtej Gullapalli, Leela Mohana Reddy Arava, Kaushik Balakrishnan, Glaura Goulart Silva, Pulickel M. Ajayan
  • Publication number: 20140251204
    Abstract: In some embodiments, the present disclosure pertains to methods of growing chalcogen-linked metallic films on a surface in a chamber. In some embodiments, the method comprises placing a metal source and a chalcogen source in the chamber, and gradually heating the chamber, where the heating leads to the chemical vapor deposition of the chalcogen source and the metal source onto the surface, and facilitates the growth of the chalcogen-linked metallic film from the chalcogen source and the metal source on the surface. In some embodiments, the chalcogen source comprises sulfur, and the metal source comprises molybdenum trioxide. In some embodiments, the growth of the chalcogen-linked metallic film occurs by formation of nucleation sites on the surface, where the nucleation sites merge to form the chalcogen-linked metallic film. In some embodiments, the formed chalcogen-linked metallic film includes MoS2.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 11, 2014
    Applicant: William Marsh Rice University
    Inventors: Sina Najmaei, Zheng Liu, Pulickel M. Ajayan, Jun Lou
  • Publication number: 20140120453
    Abstract: The present invention relates to patterned graphite oxide films and methods to make and use same. The present invention includes a novel strategy developed to imprint any required conductive patterns onto self-assembled graphene oxide (GO) membranes.
    Type: Application
    Filed: March 18, 2011
    Publication date: May 1, 2014
    Applicants: NanoHoldings, LLC, William Marsh Rice University
    Inventors: Pulickel M. Ajayan, Bhabendra K. Pradhan, Wei Gao
  • Publication number: 20140084219
    Abstract: In some embodiments, the present invention pertains to carbon nanotube fibers that include one or more fiber threads. In some embodiments, the fiber threads include doped multi-walled carbon nanotubes, such as doped double-walled carbon nanotubes. In some embodiments, the carbon nanotubes are functionalized with one or more functional groups. In some embodiments, the carbon nanotube fibers are doped with various dopants, such as iodine and antimony pentafluoride. In various embodiments, the carbon nanotube fibers of the present invention can include a plurality of intertwined fiber threads that are twisted in a parallel configuration with one another. In some embodiments, the carbon nanotube fibers include a plurality of fiber threads that are tied to one another in a serial configuration. In some embodiments, the carbon nanotube fibers of the present invention are also coated with one or more polymers.
    Type: Application
    Filed: February 28, 2012
    Publication date: March 27, 2014
    Applicant: William Marsh Rice University
    Inventors: Yao Zhao, Jinquan Wei, Padraig G. Moloney, Pulickel M. Ajayan, Enrique V. Barrera
  • Patent number: 8535791
    Abstract: Aligned carbon nanotube-polymer composite materials, systems and methods include a substrate that carries an adhesive coating thereon. A plurality of carbon nanostructures are adhered to the substrate by the adhesive coating, such that the nanostructures are formed into a predetermined architecture, such that the architecture of the nanostructures defines at least one orientation for a plurality of nanostructures, and defies the approximate spacing between the nanostructures and/or groups of nanostructures. The adherence of the carbon nanostructures in the adhesive coating stabilizes the predetermined architecture of the nanostructures, such that the architecture renders the composite material superhydrophobic.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: September 17, 2013
    Assignees: The University of Akron, Rensselaer Polytechnical Institute
    Inventors: Ali Dhinojwala, Pulickel M. Ajayan, Sunny Sethi
  • Publication number: 20130069271
    Abstract: The present invention provides methods of strengthening composites. In some embodiments, such methods generally comprise a step of applying a dynamic stress to the composite in order to increase at least one of the stiffness or strength of the composite. In some embodiments, the composite comprises: a polymer matrix; nanomaterial fillers; and an interphase between the polymer matrix and the nanomaterial fillers. In some embodiments, the stiffness or strength of the composite increases permanently in response to the applied stress. In some embodiments, the increase in the stiffness or strength of the composite may be associated with an increase in the storage modulus of the composite, a decrease in the loss modulus of the composite, and a decrease in the loss tangent of the composite. In some embodiments, the applied stress results in a rearrangement of the interphase.
    Type: Application
    Filed: June 22, 2012
    Publication date: March 21, 2013
    Applicant: William Marsh Rice University
    Inventors: Pulickel M. Ajayan, Brent Joseph Carey
  • Publication number: 20130017453
    Abstract: A fabrication process for conformal coating of a thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional micro/nanobattery applications, compositions thereof, and devices incorporating such compositions. In embodiments, conformal coatings (such as uniform thickness of around 20-30 nanometer) of polymer Polymethylmethacralate (PMMA) electrolyte layers around individual Ni—Sn nanowires were used as anodes for Li ion battery. This configuration showed high discharge capacity and excellent capacity retention even at high rates over extended cycling, allowing for scalable increase in areal capacity with electrode thickness. Such conformal nanoscale anode-electrolyte architectures were shown to be efficient Li-ion battery system.
    Type: Application
    Filed: December 10, 2010
    Publication date: January 17, 2013
    Applicant: William Marsh Rice University
    Inventors: Pulickel M. Ajayan, Fung Soung Ou, Manikoth M. Shajiumon, Sanketh R. Gowda, Arava L.M. Reedy
  • Patent number: 8310134
    Abstract: Compositions and devices for harvesting electrical energy from mechanical and thermal energy, storing such produced energy, and sensing strain based on low cost materials and processes. In embodiments, the compositions are flexible and include a flexible polymer embedded and coated with a nanostructured piezoelectric material.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 13, 2012
    Assignee: William Marsh Rice University
    Inventors: Pulickel M. Ajayan, Ashavani Kumar, Andres Rafael Botello-Mendez, Hemtej Gullapalli, Mauricio Terrones Maldonado
  • Publication number: 20120238021
    Abstract: Methods for synthesizing macroscale 3D heteroatom-doped carbon nanotube materials (such as boron doped carbon nanotube materials) and compositions thereof. Macroscopic quantities of three-dimensionally networked heteroatom-doped carbon nanotube materials are directly grown using an aerosol-assisted chemical vapor deposition method. The porous heteroatom-doped carbon nanotube material is created by doping of heteroatoms (such as boron) in the nanotube lattice during growth, which influences the creation of elbow joints and branching of nanotubes leading to the three dimensional super-structure. The super-hydrophobic heteroatom-doped carbon nanotube sponge is strongly oleophilic and an soak up large quantities of organic solvents and oil. The trapped oil can be burnt off and the heteroatom-doped carbon nanotube material can be used repeatedly as an oil removal scaffold.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 20, 2012
    Applicant: William Marsh Rice University
    Inventors: Daniel Paul Hashim, Pulickel M. Ajayan, Mauricio Terrones
  • Publication number: 20110241536
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nano structures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 6, 2011
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Patent number: 7927666
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 19, 2011
    Assignees: The University of Akron, Rensselaer Polytechnic Institute
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Publication number: 20100215724
    Abstract: A nanotube device comprises a gel matrix that includes microcapsules and functionalized nanotubes, or other functionalized nanostructures incorporated into said gel matrix. Pharmaceutical compositions and methods of treatment comprising same. The pharmaceutical compositions of the present invention enable the specific and targeted delivery of therapeutic agents such as DNA molecules, peptides, including antibodies, drug molecules (e.g. small organic molecules), while offering sufficient resistance towards mucus layer of the intestine and high concentrations of enzymes and other molecules found in the blood stream and the GI tract.
    Type: Application
    Filed: November 22, 2006
    Publication date: August 26, 2010
    Inventors: Satya Prakash, Hongmei Chen, Pavan Raja, Omkaram Nalamasu, Pulickel M. Ajayan
  • Publication number: 20100075024
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within polymers or other flexible materials to provide a flexible skin-like material, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a carbon nanotube/polymer composite material having a plurality of carbon nanotubes formed into a predetermined architecture, with each of the plurality of nanotubes having a desired width and length.
    Type: Application
    Filed: June 30, 2006
    Publication date: March 25, 2010
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Pulickel M. Ajayan, Ali Dhinojwala
  • Publication number: 20100075130
    Abstract: A branched nanostructure, includes at least one of (a) a stem and at least two levels of branches; or (b) a stem connected to three of more branches; or (c) a nanowire nanostructure comprising a stem and two or more branches; or (d) a stem connected to two or more branches, where the stem and the branches comprise a different material composition or structure.
    Type: Application
    Filed: May 17, 2006
    Publication date: March 25, 2010
    Inventors: Guowen Meng, Pulickel M. Ajayan, Yung Joon Jung
  • Patent number: 7615204
    Abstract: Long, macroscopic nanotube strands or cables, up to several tens of centimeters in length, of aligned single-walled nanotubes are synthesized by the catalytic pyrolysis of n-hexane using an enhanced vertical floating catalyst CVD technique. The long strands of nanotubes assemble continuously from ropes or arrays of nanotubes, which are intrinsically long. These directly synthesized long nanotube strands or cables can be easily manipulated using macroscopic tools.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: November 10, 2009
    Assignees: Rensselaer Polytechnic Institute, Tsinghua University
    Inventors: Pulickel M. Ajayan, Bingqing Wei, Hongwei Zhu, Cailu Xu, Dehai Wu
  • Publication number: 20090269560
    Abstract: The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, self-cleaning applications, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within an adhesive, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications.
    Type: Application
    Filed: February 11, 2009
    Publication date: October 29, 2009
    Applicants: The University of Akron, Rensselaer Polytechnical Institute
    Inventors: Ali Dhinojwala, Pulickel M. Ajayan, Sunny Sethi
  • Publication number: 20090126783
    Abstract: An optical absorber includes vertically aligned carbon nanotubes with an ultra-low reflectance less than 0.16% and an absorption efficiency greater than 99.84%. The index of refraction and the absorption constant are controlled by independently varying the nanotube diameter and nanotube spacing. The nanotubes are mostly double-walled. The density of the nanotube arrays is very low, around 0.015 g/cm3.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 21, 2009
    Inventors: Shawn-Yu Lin, James A. Bur, Zu-Po Yang, Lijie Ci, Pulickel M. Ajayan