Patents by Inventor Punyashloka Debashis

Punyashloka Debashis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113212
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
  • Publication number: 20240113220
    Abstract: Technologies for a transistor with a thin-film ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a thin layer of scandium aluminum nitride (ScxAl1-xN) ferroelectric gate dielectric. The channel of the transistor may be, e.g., gallium nitride or molybdenum disulfide. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one-transistor memory cell.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Uygar E. Avci, Kevin P. O'Brien, Scott B. Clendenning, Jason C. Retasket, Shriram Shivaraman, Dominique A. Adams, Carly Rogan, Punyashloka Debashis, Brandon Holybee, Rachel A. Steinhardt, Sudarat Lee
  • Publication number: 20240105810
    Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
  • Publication number: 20240105822
    Abstract: A transistor device may include a first perovskite gate material, a first perovskite ferroelectric material on the first gate material, a first perovskite semiconductor material on the first ferroelectric material, a second perovskite ferroelectric material on the first semiconductor material, a second perovskite gate material on the second ferroelectric material, a third perovskite ferroelectric material on the second gate material, a second perovskite semiconductor material on the third ferroelectric material, a fourth perovskite ferroelectric material on the second semiconductor material, a third perovskite gate material on the fourth ferroelectric material, a first source/drain metal adjacent a first side of each of the first semiconductor material and the second semiconductor material, a second source/drain metal adjacent a second side opposite the first side of each of the first semiconductor material and the second semiconductor material, and dielectric materials between the source/drain metals and the
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Brandon Holybee, Carly Rogan, Dmitri Evgenievich Nikonov, Punyashloka Debashis, Rachel A. Steinhardt, Tristan A. Tronic, Ian Alexander Young, Marko Radosavljevic, John J. Plombon
  • Publication number: 20240097031
    Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
  • Patent number: 11900979
    Abstract: Embodiments of the present disclosure are directed toward probabilistic in-memory computing configurations and arrangements, and configurations of probabilistic bit devices (p-bits) for probabilistic in-memory computing. concept with emerging. A probabilistic in-memory computing device includes an array of p-bits, where each p-bit is disposed at or near horizontal and vertical wires. Each p-bit is a time-varying resistor that has a time-varying resistance, which follows a desired probability distribution. The time-varying resistance of each p-bit represents a weight in a weight matrix of a stochastic neural network. During operation, an input voltage is applied to the horizontal wires to control the current through each p-bit. The currents are accumulated in the vertical wires thereby performing respective multiply-and-accumulative (MAC) operations. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Hai Li, Dmitri E. Nikonov, Punyashloka Debashis, Ian A. Young, Mahesh Subedar, Omesh Tickoo
  • Publication number: 20230413684
    Abstract: Valleytronic devices comprise a channel layer having ferrovalley properties—band-spin splitting and Berry curvature dependence on the polarization of the channel layer. Certain monochalcogenides possess these ferrovalley properties. Valleytronic devices utilize ferrovalley properties to store and/or carry information. Valleytronic devices can comprise a cross geometry comprising a longitudinal portion and a transverse portion. A spin-polarized charge current injected into the longitudinal portion of the device is converted into a voltage output across the transverse portion via the inverse spin-valley Hall effect whereby charge carriers acquire an anomalous velocity in proportion to the Berry curvature and an applied in-plane electric field resulting from an applied input voltage. Due to the Berry curvature dependency on the material polarization, switching the polarity of the input voltage that switches the channel layer polarization also switches the polarity of the differential output voltage.
    Type: Application
    Filed: June 18, 2022
    Publication date: December 21, 2023
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Hai Li, Chia-Ching Lin, Dmitri Evgenievich Nikonov, Ian Alexander Young
  • Publication number: 20230317729
    Abstract: In one embodiment, an integrated circuit apparatus includes a plurality of metallization layers, each metallization layer comprising voltage supply lines and signal lines. The apparatus also includes logic circuits formed between respective pairs of metallization layers, with each logic circuit comprising non-CMOS logic devices to perform an operation on a respective bit of an input set of bits. The non-CMOS logic devices may include one or more of ferroelectric field-effect transistor (FeFET) devices or spintronic logic devices (e.g., magnetoelectric spin orbit (MESO) devices or ferroelectric spin orbit logic (FSOL) devices), and each logic circuit may be formed on a different vertical plane within the apparatus.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Dmitri Evgenievich Nikonov, Chia-Ching Lin, Hai Li, Ian Alexander Young, Julien Sebot, Punyashloka Debashis
  • Publication number: 20230317847
    Abstract: Technologies for majority gates are disclosed. In one embodiment, a ferroelectric layer has three inputs and an output adjacent a surface of the ferroelectric. When a voltage is applied to each input, the inputs and a ground plane below the ferroelectric layer form a capacitor. The ferroelectric layer becomes polarized based on the applied voltages at the inputs. The portion of the ferroelectric layer near the output becomes polarized in the direction of polarization of the majority of the inputs. The output voltage then reflects the majority voltage of the inputs.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Hai Li, Ian Alexander Young, Dmitri Evgenievich Nikonov, Julien Sebot, Raseong Kim, Chia-Ching Lin, Punyashloka Debashis
  • Publication number: 20230320230
    Abstract: In one embodiment, an integrated circuit die includes: a first layer comprising a magnetoelectric material; a second layer comprising a monolayer transition metal dichalcogenide (TMD); a magnet between the first layer and the second layer, wherein the magnet has perpendicular magnetic anisotropy; a first conductive trace coupled to the first layer; and a second conductive trace coupled to the magnet.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Hai Li, Chia-Ching Lin, Dmitri Evgenievich Nikonov, Ian Alexander Young
  • Publication number: 20230284457
    Abstract: In one embodiment, a first integrated circuit component, a second integrated circuit component, and an electrical interconnect coupling the first integrated circuit component and the second integrated circuit component. The interconnect comprises one or more spintronic logic devices.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 7, 2023
    Applicant: Intel Corporation
    Inventors: Hai Li, Dmitri Evgenievich Nikonov, Chia-Ching Lin, Punyashloka Debashis, Ian Alexander Young, Julien Sebot
  • Publication number: 20230284538
    Abstract: A spin orbit logic device includes: a first electrically conductive layer; a layer including a magnetoelectric material (ME layer) on the first electrically conductive layer; a layer including a ferromagnetic material with in-plane magnetic anisotropy (FM layer) on the ME layer; a second electrically conductive layer on the FM layer; a layer including a dielectric material on the second electrically conductive layer (coupling layer); a layer including a spin orbit coupling material (SOC layer) on the coupling layer; and a layer including a ferromagnetic material with perpendicular magnetic anisotropy (PMA layer) on the SOC layer.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 7, 2023
    Inventors: Punyashloka Debashis, Chia-Ching Lin, Hai Li, Dmitri Evgenievich Nikonov, Ian Alexander Young
  • Publication number: 20230189659
    Abstract: A probabilistic bit (p-bit) comprises a magnetic tunnel junction (MTJ) comprising a free layer whose magnetization orientation randomly fluctuates in the presence of thermal noise. The p-bit MTJ comprises a reference layer, a free layer, and an insulating layer between the reference and free layers. The reference layer and the free layer comprise synthetic antiferromagnets. The use of a synthetic antiferromagnet for the reference layer reduces the amount of stray magnetic field that can impact the magnetization of the free layer and the use of a synthetic antiferromagnet for the free layer reduces stray magnetic field bias on p-bit random number generation. Tuning the thickness of the nonmagnetic layer of synthetic antiferromagnet free layer can result in faster random number generation time relative to a comparable MTJ with a free layer comprising a single-layer ferromagnet.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 15, 2023
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Tanay A. Gosavi, Hai Li, Chia-Ching Lin, Dmitri Evgenievich Nikonov, Kaan Oguz, Ashish Verma Penumatcha, Marko Radosavljevic, Ian Alexander Young
  • Publication number: 20230070486
    Abstract: Technologies for non-uniform random number generation are disclosed. In one embodiment, the distribution of resistance of a magnetic tunnel junction (MTJ) can be controlled by applying a mechanical strain with a piezoelectric layer and by applying a spin torque by a spin-orbit torque layer. The distribution of resistance can be approximately a Gaussian distribution. In another embodiment, an array of N probabilistic bits (p-bits) has a bias and feedback matrix that result in the array of p-bits outputting an N-bit random number with a non-uniform distribution, such as a Gaussian distribution.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Hai Li
  • Publication number: 20230065198
    Abstract: A memory device, an integrated circuit component including an array of the memory devices, and an integrated device assembly including the integrated circuit component. The memory devices includes a first electrode; a second electrode including an antiferromagnetic (AFM) material; and a memory stack including: a first layer adjacent the second electrode and including a multilayer stack of adjacent layers comprising ferromagnetic materials; a second layer adjacent the first layer; and a third layer adjacent the second layer at one side thereof, and adjacent the first electrode at another side thereof, the second layer between the first layer and the third layer, the third layer including a ferromagnetic material. The memory device may correspond to a magnetic tunnel junction (MTJ) magnetic random access memory bit cell, and the memory stack may correspond to a MTJ device.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Chia-Ching Lin, Tanay A. Gosavi, Ashish Verma Penumatcha, Kaan Oguz, Punyashloka Debashis
  • Publication number: 20230058938
    Abstract: A pbit device, in one embodiment, includes a first field-effect transistor (FET) that includes a source region, a drain region, a source electrode on the source region, a drain electrode on the drain region, a channel region between the source and drain regions, a dielectric layer on a surface over the channel region, an electrode layer above the dielectric layer, and a ferroelectric (FE) material layer between the dielectric layer and the electrode layer. The pbit device also includes a second FET comprising a source electrode, a drain electrode, and a gate electrode. The drain electrode of the second FET is connected to the drain electrode of the first FET.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Dmitri Evgenievich Nikonov, Hai Li, Chia-Ching Lin, Raseong Kim, Tanay A. Gosavi, Ashish Verma Penumatcha, Uygar E. Avci, Marko Radosavljevic, Ian Alexander Young
  • Publication number: 20220044719
    Abstract: Embodiments of the present disclosure are directed toward probabilistic in-memory computing configurations and arrangements, and configurations of probabilistic bit devices (p-bits) for probabilistic in-memory computing. concept with emerging. A probabilistic in-memory computing device includes an array of p-bits, where each p-bit is disposed at or near horizontal and vertical wires. Each p-bit is a time-varying resistor that has a time-varying resistance, which follows a desired probability distribution. The time-varying resistance of each p-bit represents a weight in a weight matrix of a stochastic neural network. During operation, an input voltage is applied to the horizontal wires to control the current through each p-bit. The currents are accumulated in the vertical wires thereby performing respective multiply-and-accumulative (MAC) operations. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Hai Li, Dmitri E. Nikonov, Punyashloka Debashis, Ian A. Young, Mahesh Subedar, Omesh Tickoo