Patents by Inventor Purvee P. Parikh

Purvee P. Parikh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8744579
    Abstract: The invention provides methods and apparatus for determining in a non-tracking pacing mode (e.g., DDI/R, VVI/R) whether a ventricular pacing stimulus is capturing a paced ventricle, including some or all of the following aspects. For example, increasing a ventricular pacing rate a nominal amount to an overdrive pacing rate higher than a most recent heart rate and evaluating a conduction interval from a first pacing ventricle to a second sensing ventricle and then continuing to monitor the underlying rate to ensure that a threshold testing pacing rate will not exceed a predetermined minimum interval and providing pacing stimulation to the first ventricle and sensing the second ventricle to determine whether the pacing stimulation to the first ventricle was one of sub-threshold and supra-threshold. The methods and apparatus are especially useful in conjunction with ensuring actual delivery of a ventricular pacing regime (e.g., cardiac resynchronization therapy or “CRT”).
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: June 3, 2014
    Assignee: Medtronic, Inc.
    Inventors: Purvee P. Parikh, John C. Stroebel, Todd J. Sheldon, Karen J. Kleckner
  • Patent number: 8249709
    Abstract: Assessing symptomatic and asymptomatic physiologic changes due to chronic heart failure involves apparatus and methods for gauging degradation and possible improvement using automated measurement of inter-ventricular conduction time, both alone and in combination with other automated physiologic tests. Conduction times increase due to the greater distance a wavefront must traverse as a heart enlarges. Analysis of conduction time can be used to verify the occurrence of cardiac remodeling due to heart failure as well as beneficial reverse remodeling due to successful heart failure therapy delivery. Patient activity level(s) and presence/increase in pulmonary fluids can also be used to automatically determine changes in heart failure status and/or predict hospitalization. Conduction time is monitored between electrodes positioned in the left and right ventricles of the heart via endocardial or epicardial electrodes.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 21, 2012
    Assignee: Medtronic, Inc.
    Inventors: Lynn A. Davenport, Purvee P. Parikh, Todd J. Sheldon
  • Publication number: 20110152660
    Abstract: Assessing symptomatic and asymptomatic physiologic changes due to chronic heart failure involves apparatus and methods for gauging degradation and possible improvement using automated measurement of inter-ventricular conduction time, both alone and in combination with other automated physiologic tests. Conduction times increase due to the greater distance a wavefront must traverse as a heart enlarges. Analysis of conduction time can be used to verify the occurrence of cardiac remodeling due to heart failure as well as beneficial reverse remodeling due to successful heart failure therapy delivery. Patient activity level(s) and presence/increase in pulmonary fluids can also be used to automatically determine changes in heart failure status and/or predict hospitalization. Conduction time is monitored between electrodes positioned in the left and right ventricles of the heart via endocardial or epicardial electrodes.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: Medtronic, Inc.
    Inventors: Lynn A. Davenport, Purvee P. Parikh, Todd J. Sheldon
  • Patent number: 7899538
    Abstract: Assessing symptomatic and asymptomatic physiologic changes due to chronic heart failure involves apparatus and methods for gauging degradation and possible improvement using automated measurement of inter-ventricular conduction time, both alone and in combination with other automated physiologic tests. Conduction times increase due to the greater distance a wavefront must traverse as a heart enlarges. Analysis of conduction time can be used to verify the occurrence of cardiac remodeling due to heart failure as well as beneficial reverse remodeling due to successful heart failure therapy delivery. Patient activity level(s) and presence/increase in pulmonary fluids can also be used to automatically determine changes in heart failure status and/or predict hospitalization. Conduction time is monitored between electrodes positioned in the left and right ventricles of the heart via endocardial or epicardial electrodes.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: March 1, 2011
    Assignee: Medtronic, Inc.
    Inventors: Lynn A. Davenport, Purvee P. Parikh, Todd J. Sheldon
  • Publication number: 20100137935
    Abstract: The invention provides methods and apparatus for determining in a non-tracking pacing mode (e.g., DDI/R, VVI/R) whether a ventricular pacing stimulus is capturing a paced ventricle, including some or all of the following aspects. For example, increasing a ventricular pacing rate a nominal amount to an overdrive pacing rate higher than a most recent heart rate and evaluating a conduction interval from a first pacing ventricle to a second sensing ventricle and then continuing to monitor the underlying rate to ensure that a threshold testing pacing rate will not exceed a predetermined minimum interval and providing pacing stimulation to the first ventricle and sensing the second ventricle to determine whether the pacing stimulation to the first ventricle was one of sub-threshold and supra-threshold. The methods and apparatus are especially useful in conjunction with ensuring actual delivery of a ventricular pacing regime (e.g., cardiac resynchronization therapy or “CRT”).
    Type: Application
    Filed: February 4, 2010
    Publication date: June 3, 2010
    Applicant: Medtronic, Inc.
    Inventors: Purvee P. Parikh, John C. Stroebel, Todd J. Sheldon, Karen J. Kleckner
  • Patent number: 7684863
    Abstract: The invention provides methods and apparatus for determining in a non-tracking pacing mode (e.g., DDI/R, VVI/R) whether a ventricular pacing stimulus is capturing a paced ventricle, including some or all of the following aspects. For example, increasing a ventricular pacing rate a nominal amount to an overdrive pacing rate higher than a most recent heart rate and evaluating a conduction interval from a first pacing ventricle to a second sensing ventricle and then continuing to monitor the underlying rate to ensure that a threshold testing pacing rate will not exceed a predetermined minimum interval and providing pacing stimulation to the first ventricle and sensing the second ventricle to determine whether the pacing stimulation to the first ventricle was one of sub-threshold and supra-threshold. The methods and apparatus are especially useful in conjunction with ensuring actual delivery of a ventricular pacing regime (e.g., cardiac resynchronization therapy or “CRT”).
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: March 23, 2010
    Assignee: Medtronic, Inc.
    Inventors: Purvee P. Parikh, John C. Stroebel, Todd J. Sheldon, Karen J. Kleckner
  • Publication number: 20070288059
    Abstract: Assessing symptomatic and asymptomatic physiologic changes due to chronic heart failure involves apparatus and methods for gauging degradation and possible improvement using automated measurement of inter-ventricular conduction time, both alone and in combination with other automated physiologic tests. Conduction times increase due to the greater distance a wavefront must traverse as a heart enlarges. Analysis of conduction time can be used to verify the occurrence of cardiac remodeling due to heart failure as well as beneficial reverse remodeling due to successful heart failure therapy delivery. Patient activity level(s) and presence/increase in pulmonary fluids can also be used to automatically determine changes in heart failure status and/or predict hospitalization. Conduction time is monitored between electrodes positioned in the left and right ventricles of the heart via endocardial or epicardial electrodes.
    Type: Application
    Filed: March 26, 2007
    Publication date: December 13, 2007
    Inventors: Lynn A. Davenport, Purvee P. Parikh, Todd J. Sheldon