Patents by Inventor Pushkar Tandon

Pushkar Tandon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11796749
    Abstract: A rollable optical fiber ribbon utilizing low attenuation, bend insensitive fibers and cables incorporating such rollable ribbons are provided. The optical fibers are supported by a ribbon body, and the ribbon body is formed from a flexible material such that the optical fibers are reversibly movable from an unrolled position to a rolled position. The optical fibers have a large mode filed diameter, such as ?9 microns at 1310 nm facilitating low attenuation splicing/connectorization. The optical fibers are also highly bend insensitive, such as having a macrobend loss of ?0.5 dB/turn at 1550 nm for a mandrel diameter of 15 mm.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: October 24, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20230335966
    Abstract: An amplifying optical fiber includes a common cladding comprising a radius defining a glass portion of the amplifying optical fiber and having a relative refractive index ?4. At least one waveguide extends through the common cladding The at least one waveguide includes a core region, an inner cladding region encircling and directly contacting the core region, and a depressed cladding region encircling and directly contacting the inner cladding region. The core region includes from greater than or equal to about 500 ppm and less than or equal to about 10,000 ppm Er2O3 and has core maximum relative refractive index ?1max. The inner cladding region includes an inner cladding relative refractive index ?2. The depressed cladding region includes a minimum depressed relative refractive index ?3min such that ?1max>?2>?3min and ?4>?3min.
    Type: Application
    Filed: March 28, 2023
    Publication date: October 19, 2023
    Inventors: Kevin Wallace Bennett, Pushkar Tandon
  • Patent number: 11782207
    Abstract: An optical fiber is provided that includes a core region, a cladding region having a radius less than about 62.5 microns; a polymer coating comprising a high-modulus layer and a low-modulus layer, wherein a thickness of the low-modulus inner coating layer is in a range of 4 microns to 20 microns, the modulus of the low-modulus inner coating layer is less than or equal to about 0.35 MPa, a thickness of the high-modulus coating layer is in a range of 4 microns to 20 microns, the modulus of the high-modulus inner coating layer is greater than or equal to about 1.6 GPa, and wherein a puncture resistance of the optical fiber is greater than 20 g, and wherein a microbend attenuation penalty of the optical fiber is less than 0.03 dB/km, and wherein an outer diameter of the coated optical fiber is less than or equal to 175 microns.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: October 10, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Scott Robertson Bickham, Matthew Ryan Drake, Shandon Dee Hart, Ming-Jun Li, Joseph Edward McCarthy, Weijun Niu, Pushkar Tandon
  • Publication number: 20230314697
    Abstract: A coupled-core multicore optical fiber has a plurality of cores that are doped with alkali metals or chlorine to achieve low attenuation and a large effective area. The cores may be embedded in a common cladding region that may be fluorine doped. The cores may also be doped with chlorine, either with the alkali metals described above or without the alkali metals.
    Type: Application
    Filed: May 24, 2023
    Publication date: October 5, 2023
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Publication number: 20230294324
    Abstract: A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
    Type: Application
    Filed: April 14, 2023
    Publication date: September 21, 2023
    Inventors: Douglas Munroe Beall, Suhao He, Achim Karl-Erich Heibel, Kenneth Richard Miller, Pushkar Tandon, David John Thompson
  • Publication number: 20230266525
    Abstract: A single mode optical fiber is provided that includes a core region having an outer radius r1 and a maximum relative refractive index ?1max. The single mode optical fiber further includes a cladding region surrounding the core region, the cladding region includes a depressed-index cladding region, a relative refractive index ?3 of the depressed-index cladding region increasing with increased radial position. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than 0.005 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of 9.0 microns or greater at 1310 nm wavelength.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 24, 2023
    Inventors: Ming-Jun Li, Pushkar Tandon
  • Patent number: 11733449
    Abstract: A coupled-core multicore optical fiber has a plurality of cores that are doped with alkali metals or chlorine to achieve low attenuation and a large effective area. The cores may be embedded in a common cladding region that may be fluorine doped. The cores may also be doped with chlorine, either with the alkali metals described above or without the alkali metals.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: August 22, 2023
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 11733453
    Abstract: The optical fibers disclosed is a single mode optical fiber comprising a core region and a cladding region surrounding and directly adjacent to the core region. The core region can have a radius r1 in a range from 3 ?m to 7 ?m and a relative refractive index profile ?1 having a maximum relative refractive index ?1max in the range from 0.25% to 0.50%. The cladding region can include a first outer cladding region and a second outer cladding region surrounding and directly adjacent to the first outer cladding region. The first outer cladding region can have a radius r4a. The second outer cladding region can have a radius r4b less than or equal to 45 ?m and comprising silica based glass doped with titania.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: August 22, 2023
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Sarda Tandon, Bin Yang
  • Patent number: 11726257
    Abstract: A multicore optical fiber includes an inner glass region having a plurality of core regions surrounded by a common outer cladding, the inner glass region further having at least one marker and an outer diameter in the range of 120 microns and 130 microns, wherein each core region is comprised of a germania-doped silica core and a fluorine-doped silica trench, wherein the trench volume of the fluorine-doped silica trench is greater than 50% ? microns2. The fiber has an outer coating layer surrounding the inner glass region, the outer coating layer having a primary coating layer and a secondary coating layer with a diameter of the secondary coating layer equal to or less than 200 microns, wherein each core region has a mode field diameter greater than 8.2 microns at 1310 nm, a cable cutoff wavelength of less than 1260 nm, and zero dispersion wavelength of less than 1335 nm.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: August 15, 2023
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Pushkar Tandon
  • Publication number: 20230234879
    Abstract: A system for processing an optical fiber includes: a draw furnace, said draw furnace containing an optical fiber preform; a bare optical fiber drawn from said optical fiber preform, said bare optical fiber extending from said draw furnace along a process pathway; and a slow cooling device operatively coupled to and downstream from said draw furnace, said slow cooling device exposing said bare optical fiber to a slow cooling device process temperature in the range from 1000° C. to 1400° C., wherein the bare optical fiber passes through the slow cooling device at least two times.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 27, 2023
    Inventors: Bruce Warren Reding, Pushkar Tandon
  • Patent number: 11675122
    Abstract: The present disclosure provides optical fibers with an impact-resistant coating system. The fibers feature low attenuation. The coating system includes a primary coating and a secondary coating. The primary coating and secondary coating have reduced thickness to provide low-diameter fibers without sacrificing protection. The primary coating has high tear strength and is resistant to damage caused by mechanical force. The secondary coating has high puncture resistance. The outer diameter of the optical fiber is less than or equal to 190 ?m.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: June 13, 2023
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon, Ruchi Sarda Tandon
  • Patent number: 11675125
    Abstract: A single mode optical fiber is provided that includes a core region having an outer radius r1 and a maximum relative refractive index ?1max. The single mode optical fiber further includes a cladding region surrounding the core region, the cladding region includes a depressed-index cladding region, a relative refractive index ?3 of the depressed-index cladding region increasing with increased radial position. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than 0.005 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of 9.0 microns or greater at 1310 nm wavelength.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: June 13, 2023
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Pushkar Tandon
  • Patent number: 11675124
    Abstract: A single mode optical fiber is provided that includes a core region and a cladding region, the cladding region including a depressed-index cladding region, a first outer cladding region, and a second outer cladding region. The first outer cladding region has a lower relative refractive than the second outer cladding region. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, has a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than about 0.005 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of about 9.0 microns or greater at 1310 nm wavelength and a cable cutoff of less than or equal to about 1260 nm.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: June 13, 2023
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Pushkar Tandon
  • Patent number: 11673132
    Abstract: A ceramic honeycomb body, suitable for use in exhaust gas processing, includes a honeycomb structure having a plurality of through-channels, a first portion of the plurality of through-channels have a first hydraulic diameter dh1, a second portion of the plurality of through-channels have a second hydraulic diameter that is smaller than the first hydraulic diameter dh1, the first hydraulic diameter dh1 is equal to or greater than 1.1 mm, and the first and second portions of through-channels, taken together, have a geometric surface area GSA greater than 2.9 mm?1. Diesel oxidation catalysts and methods of soot removal are also provided, as are other aspects.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 13, 2023
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Dana Craig Bookbinder, Achim Karl-Erich Heibel, Pushkar Tandon
  • Publication number: 20230168428
    Abstract: An optical fiber includes a core region of silica glass doped with an alkali metal oxide. A depressed-index cladding region surrounds the core region and comprises silica glass doped with a first concentration of fluorine. The depressed-index cladding region has a minimum relative refractive index ?3min in a range from ?0.80% to ?0.30%. An outer cladding region comprises silica glass doped with a second, lesser concentration. The outer cladding region has a relative refractive index ?4, where ?4??3min>0.05%. The optical fiber has a time-to-peak hydrogen aging value at 23° C. of less than 100 hours upon exposure to an atmosphere having a total pressure of 1 atm and containing a partial pressure of 0.01 atm H2 and a partial pressure of 0.99 atm N2. The optical fiber exhibits an attenuation <0.16 dB/km.
    Type: Application
    Filed: November 18, 2022
    Publication date: June 1, 2023
    Inventors: Rostislav Radiyevich Khrapko, Hazel Benton Matthews, III, Pushkar Tandon
  • Publication number: 20230168436
    Abstract: A fiber coupling assembly for interfacing solid core and a hollow core optical fibers includes first and second fiber optic ferrules each having a bore between proximal and distal end faces thereof. At least one ferrule end face is non-perpendicular to longitudinal axes of the ferrules. A bore of one ferrule contains a hollow core optical fiber, and a bore of the other optic ferrule contains a solid core optical fiber with a mode field diameter (MFD) transition region, to bridge a MFD mismatch between the fibers. An air gap may be provided between at least portions of ferrules at an inter-ferrule region. A fiber optic ferrule includes a bore that is non-parallel with a longitudinal axis of the ferrule, and at least one end face that is non-perpendicular to the longitudinal axis, with an optical fiber in the bore optionally including a MFD transition region.
    Type: Application
    Filed: November 17, 2022
    Publication date: June 1, 2023
    Inventors: Stephan Lvovich Logunov, Pushkar Tandon, Qi Wu
  • Patent number: 11656403
    Abstract: The optical fibers disclosed is a single mode optical fiber having a core region and a cladding region surrounding and directly adjacent to the core region. The core region can have a radius r1 in a range from 3.0 microns to 6.0 microns and a core volume V1 less than 6.0%-micron2. The cladding region can include a first outer cladding region and a second outer cladding region surrounding and directly adjacent to the first outer cladding region. The first outer cladding region can have a radius r4a, the second outer cladding region can have a radius r4b less than or equal to 65 microns and comprising silica based glass doped with titania. The disclosed single mode optical fiber can have a fiber cutoff wavelength ?CF less than 1530 nm.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: May 23, 2023
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon
  • Patent number: 11654592
    Abstract: A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: May 23, 2023
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Suhao He, Achim Karl-Erich Heibel, Kenneth Richard Miller, Pushkar Tandon, David John Thompson
  • Publication number: 20230132984
    Abstract: Optical fiber draw production systems, pressure devices, and methods of fabrication of optical fiber are disclosed. In one embodiment, a method of forming an optical fiber includes heating a preform to draw the optical fiber through a draw furnace, and passing the optical fiber through a pressure device while the optical fiber is still forming, wherein a pressure within the pressure device is greater than an atmospheric pressure.
    Type: Application
    Filed: October 26, 2022
    Publication date: May 4, 2023
    Inventors: Nikolaos Pantelis Kladias, Ming-Jun Li, Bruce Warren Reding, Pushkar Tandon, Kevin Lee Wasson
  • Publication number: 20230106986
    Abstract: A coupler including a first end that optically couples with a plurality of single-core optical fibers, a second end that optically couples with a multi-core optical fiber, and a plurality of cores that each extends from the first end to the second end. The plurality of cores comprising a first core such that an outer diameter of the first core at the first end is larger than an outer diameter of the first core at the second end. The coupler further includes an outer cladding surrounding the plurality of cores and extending from the first end to the second end such that an outer diameter of the outer cladding at the first end is larger than an outer diameter of the outer cladding at the second end. Additionally, the coupler is a single, contiguous, conical glass member that tapers from the first end to the second end.
    Type: Application
    Filed: September 20, 2022
    Publication date: April 6, 2023
    Inventors: Stephan Lvovich Logunov, Pushkar Tandon