Patents by Inventor Pushkar Tandon

Pushkar Tandon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12055753
    Abstract: The optical fiber disclosed has a glass fiber including a core and a cladding. The core comprises silica glass doped with chlorine and having an outer radius r1 between 3.0 microns and 10.0 microns. The cladding has an outer radius r4 not less than 50.0 microns. A primary coating surrounding the cladding has a thickness (r5-r4) between 5.0 microns and 20.0 microns, and an in situ modulus less than 0.30 MPa. A secondary coating surrounding the primary coating has a thickness (r6-r5) between 8.0 microns and 30.0 microns, a Young's modulus greater than 1500 MPa, and a normalized puncture load greater than 3.6×10?3 g/micron2. The optical fiber has a 22-meter cable cutoff wavelength less than 1530 nm, an attenuation at 1550 nm of less than 0.17 dB/km, and a bending loss at 1550 nm of less than 3.0 dB/turn.
    Type: Grant
    Filed: August 31, 2023
    Date of Patent: August 6, 2024
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon, Ruchi Sarda Tandon
  • Publication number: 20240255694
    Abstract: An optical fiber having a silica-based core region with an outer radius r1 from about 4.0 microns to about 4.6 microns and a core volume from about 4.5% ?-micron2 to about 5.5% ?-micron2. The optical fiber further includes a depressed-index cladding region and an outer cladding region. The depressed-index cladding region having an inner radius r2 such that r1/r2 is greater than about 0.4 and less than about 0.6 and a trench volume between about ?50% ?-micron2s and about ?20% ?-micron2. The optical fiber has a mode field diameter at 1310 nm from about 8.8 microns to about 9.4 microns, a 2 m cable cutoff from about 1120 nm to about 1260 nm, a bending loss at 1310 nm, as determined by the mandrel wrap test using a 15 mm diameter mandrel, of less than 1.0 dB/turn, and a zero dispersion wavelength between 1300 nm and 1324 nm.
    Type: Application
    Filed: January 12, 2024
    Publication date: August 1, 2024
    Inventors: Scott Robertson Bickham, Martin Hempstead, Snigdharaj Kumar Mishra, Stephen Quenton Smith, Pushkar Tandon
  • Publication number: 20240254034
    Abstract: A method of making a multicore optical fiber preform, the method including consolidating a preform assembly to form the multicore optical fiber preform, the preform assembly including a plurality of core canes such that each core cane is disposed within an axial hole of a sleeve, each core cane including a core section of alkali doped silica glass such that the silica glass has a maximum alkali concentration between about 0.10 wt. % and about 10 wt. %, the core section of each core cane being encased by the sleeve along a height of the core cane and by covers disposed at first and second axial ends of the core section, and the covers including silica glass having a chlorine concentration of about 0.05 wt. % or less.
    Type: Application
    Filed: January 19, 2024
    Publication date: August 1, 2024
    Inventors: Leon Devone, JR., Matthew Ryan Drake, Rostislav Radiyevich Khrapko, Pushkar Tandon, Matthew Artus Tuggle
  • Patent number: 12050339
    Abstract: A coupled-core multicore optical fiber has a plurality of cores that are doped with alkali metals or chlorine to achieve low attenuation and a large effective area. The cores may be embedded in a common cladding region that may be fluorine doped. The cores may also be doped with chlorine, either with the alkali metals described above or without the alkali metals.
    Type: Grant
    Filed: May 24, 2023
    Date of Patent: July 30, 2024
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Publication number: 20240246850
    Abstract: A process of forming a titania-silica glass body, the process including exposing a titania-doped silica soot body to a first thermal treatment by heating the body to a first temperature T1 between about 800° C. and about 1100° C. for a first time duration t1 calculated using the equation: t ? 1 > L c 2 4 ? ? , wherein Lc is the characteristic length (cm) of the body and ? is the thermal diffusivity (cm2/sec) of the body. The process further including exposing the body to a second thermal treatment by heating the body to a second temperature T2 between about 1050° C. and about 1250° C. wherein, after the second thermal treatment, a peak-to-valley difference of hydroxyl concentration amongst a plurality of segments of the body is about 70 ppm or less.
    Type: Application
    Filed: January 12, 2024
    Publication date: July 25, 2024
    Inventors: Michael John Campion, Sergey Nikolaevich Shubin, Pushkar Tandon
  • Patent number: 12006253
    Abstract: An optical fiber curing component includes a first tube comprising a first body defining a first interior surface and a first exterior surface, the first tube defining a first aperture and a second aperture on opposite ends of a first cavity, wherein the first tube defines a central axis extending through the first cavity; light sources coupled to the first body of the first tube and configured to emit light toward the central axis of the first tube, wherein each of the light sources intersect a common plane defined perpendicular to the central axis of the first tube; a silica glass article, having an anti-reflective coating, disposed between each of the plurality of light sources and the central axis of the first tube; and a reflective coating positioned on the interior surface of the first body and configured to reflect the light toward the central axis of the first tube.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: June 11, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Darren Andrew Stainer, Pushkar Tandon, Ruchi Tandon
  • Patent number: 11982833
    Abstract: In some embodiments, an optical fiber transmission link, includes a length of dispersion compensating fiber (DCF), the dispersion compensating fiber coupled to a length of single-mode fiber (SMF) having a zero dispersion wavelength of 1300 nm to 1324 nm; wherein the optical fiber transmission link comprising the dispersion compensating fiber coupled to the single-mode fiber and operating at wavelengths between 1265 nm and 1375 nm increases maximum link lengths of the optical fiber transmission link by more than 60% as compared to the link length of the optical fiber transmission link with the single-mode fiber only; and wherein the maximum link length is calculated from the maximum allowed positive and negative accumulated dispersion at wavelengths between 1265 nm and 1375 nm.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: May 14, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Pushkar Tandon, Sergey Yurevich Ten
  • Publication number: 20240094492
    Abstract: Provided are embodiments of an optical fiber cable. The optical fiber cable includes a cable jacket having an inner surface and an outer surface. The inner surface defines a central cable bore, and the outer surface defines an outermost surface of the optical fiber cable and a cable cross-sectional area (AC). At least one buffer tube is disposed within the central cable bore. Each buffer tube has an interior surface defining a buffer tube cross-sectional area (ATube, ID). A plurality of optical fibers (N) are disposed within the at least one buffer tube. Each optical fiber has a fiber diameter of 160 microns to 200 microns. The plurality of optical fibers have a total fiber area (AF). The buffer tube has a free space (1?AF/ATube, ID) of at least 37%, and the optical fiber cable has a fiber density (N/AC) of at least 3.25 fibers/mm2.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventors: Leigh Rooker Josey, Snigdharaj Kumar Mishra, Sebastian Olszewski, David Alan Seddon, Pushkar Tandon
  • Publication number: 20240094489
    Abstract: Provided are embodiments of an optical fiber cable. The optical fiber cable includes a cable jacket having an inner surface and an outer surface. The inner surface defines a central cable bore, and the outer surface defines an outermost surface of the optical fiber cable. The optical fiber cable also includes a cable core disposed in the central cable bore. The cable core includes a plurality of multicore optical fibers and a cross-sectional area. The plurality of multicore optical fibers fill at least 50% of the cross-sectional area of the cable core. Each multicore optical fiber of the plurality of multicore optical fibers has an inner glass region having a plurality of core regions surrounded by a common outer cladding. The cable core has a core region density that is at least 40 core regions/mm2.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventor: Pushkar Tandon
  • Publication number: 20240069271
    Abstract: An uncoupled-core multicore optical fiber is disclosed, the fiber including at least two core portions, each core portion including a core and a depressed-index cladding. The core having a radius r1 and a relative refractive index ?1. The depressed-index cladding having a radius r2 and a relative refractive index ?2, the depressed-index cladding surrounding and directly contacting the core, a volume V2 of the depressed-index cladding being about 15.0% ?-micron2 to about 37.0% ?-micron2. The fiber further includes a common cladding having a radius r3 and a relative refractive index ?3 such that ?2<?3<?1, the common cladding surrounding and directly contacting the depressed-index cladding. Furthermore, a cable cutoff wavelength of each core portion is about 1530 nm or less and a center-to-center spacing between centerlines of adjacent core portions is about 48 microns to about 60 micron.
    Type: Application
    Filed: August 18, 2023
    Publication date: February 29, 2024
    Inventors: Pushkar Tandon, Aramais Robert Zakharian
  • Publication number: 20240061167
    Abstract: A multicore optical fiber including four cores arranged in a linear configuration, the centerline of each core being spaced from the centerline of an adjacent core by a distance x of about 30 microns or less, and each core having a relative refractive index ?1. A cladding surrounding each of the four cores, the cladding including an inner cladding region with a relative refractive index ?2, a depressed-index cladding region with a relative refractive index ?3, and an outer cladding region with a relative refractive index ?4, wherein ?1>?2>?3 and ?1>?4>?3. Furthermore, each core of the four cores has a mode field diameter, at a wavelength of 1310 nm, of about 8.1 microns or less, and cross talk between adjacent cores is about ?18 dB or less at wavelengths of 1310 nm and 1550 nm per 2 km fiber length.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 22, 2024
    Inventors: Kevin Wallace Bennett, Douglas Llewellyn Butler, Pushkar Tandon
  • Publication number: 20240053531
    Abstract: Embodiments of current disclosure include a multicore optical fiber including a common-cladding region having a refractive index ?cc and an outer radius RCC; and at least two core portions disposed within the common-cladding region, wherein each core portion includes a central axis, a core region extending from the central axis to an outer radius ri, wherein each of the at least two core portions is doped with a dopant from a group including sodium, potassium, rubidium or combination thereof, an inner-cladding region encircling and directly contacting the core region and extending from the outer radius r1 to an outer radius r2, a trench region encircling and directly contacting the inner cladding region and extending from the outer radius r2 to an outer radius r3, the trench region having a trench volume greater than or equal to 20% ? micron2 and less than or equal to 60% ? micron2.
    Type: Application
    Filed: July 25, 2023
    Publication date: February 15, 2024
    Inventors: Pushkar Tandon, Aramais Robert Zakharian
  • Publication number: 20240043313
    Abstract: A method of manufacturing an optical fiber, the method includes drawing a first optical fiber preform at a first draw tension to produce a first alkali doped optical fiber and drawing the first optical fiber preform at a second draw tension to produce a second alkali doped optical fiber, measuring the attenuation of the first alkali doped optical fiber and the second alkali doped optical fiber such that the second alkali doped optical fiber has a lower attenuation. Additionally, the method includes setting the draw tension to the second draw tension and drawing a second optical fiber preform at the second draw tension to produce a third alkali doped optical fiber. The third alkali-doped optical fiber has an attenuation at 850 nm of about 1.50 dB/km or less and an attenuation at 1550 nm of about 0.155 dB/km or less.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 8, 2024
    Inventors: Sushmit Sunil Kumar Goyal, Craig Daniel Nie, Pushkar Tandon
  • Publication number: 20240045138
    Abstract: An optical fiber is provided that includes a core region and a cladding region. The core region is formed of silica glass doped with chlorine and/or an alkali metal. The cladding region surrounds the core region and includes an inner cladding directly adjacent to the core region, an outer cladding surrounding the inner cladding, and a trench region disposed between the inner cladding and the outer cladding in a radial direction. The trench region has a volume of about 30% ?-micron2 or greater. Additionally, the optical fiber has an effective area at 1550 nm of about 100 micron2 or less.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 8, 2024
    Inventors: Scott Robertson Bickham, Sergejs Makovejs, Pushkar Tandon, Aramais Robert Zakharian
  • Publication number: 20240036267
    Abstract: A method of terminating an optical fiber having an inner core with a fiber optic connector including a ferrule having a micro-bore and an end face with a mating location is disclosed. The method includes determining a bore bearing angle of a bore offset of the micro-bore in the ferrule; determining a core bearing angle of a core offset of the inner core in the optical fiber; orienting the ferrule and the optical fiber relative to each other to minimize the distance between the inner core and the mating location; heating the ferrule to an processing temperature above room temperature; and coupling the optical fiber to the micro-bore of the ferrule. The size of the micro-bores and optical fibers may be selected to maximize the number of interference fits in a population of ferrules and optical fibers while minimizing failed fittings between the ferrules and optical fibers in the populations.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 1, 2024
    Inventors: Raisa Rose Boben, Woraphat Dockchoorung, Riley Saunders Freeland, Klaus Hartkorn, Mark Alan McDermott, Aislin Karina Sullivan, Pushkar Tandon
  • Publication number: 20240034667
    Abstract: A method of forming an optical element is provided. The method includes producing silica-based soot particles using chemical vapor deposition, the silica-based soot particles having an average particle size of between about 0.05 ?m and about 0.25 ?m. The method also includes forming a soot compact from the silica-based soot particles and doping the soot compact with a halogen in a closed system by contacting the silica-based soot compact with a halogen-containing gas in the closed system at a temperature of less than about 1200° C.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 1, 2024
    Inventors: Steven Bruce Dawes, Douglas Hull Jennings, Pushkar Tandon
  • Publication number: 20240027716
    Abstract: A rollable optical fiber ribbon utilizing low attenuation, bend insensitive fibers and cables incorporating such rollable ribbons are provided. The optical fibers are supported by a ribbon body, and the ribbon body is formed from a flexible material such that the optical fibers are reversibly movable from an unrolled position to a rolled position. The optical fibers have a large mode filed diameter, such as ?9 microns at 1310 nm facilitating low attenuation splicing/connectorization. The optical fibers are also highly bend insensitive, such as having a macrobend loss of ?0.5 dB/turn at 1550 nm for a mandrel diameter of 15 mm.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 11874494
    Abstract: An optical fiber is provided that includes a core region and a cladding region. The core region is formed of silica glass doped with chlorine and/or an alkali metal. The cladding region surrounds the core region and includes an inner cladding directly adjacent to the core region, an outer cladding surrounding the inner cladding, and a trench region disposed between the inner cladding and the outer cladding in a radial direction. The trench region has a volume of about 30% ?-micron2 or greater. Additionally, the optical fiber has an effective area at 1550 nm of about 100 micron2 or less.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: January 16, 2024
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Sergejs Makovejs, Pushkar Tandon, Aramais Robert Zakharian
  • Patent number: 11860408
    Abstract: The disclosure provides optical fibers that exhibit low macrobend loss at 1550 nm at bend diameters between 10 mm and 40 mm. The relative refractive index profile of the fibers includes a trench cladding region with small depth, large width and a trench volume configured to minimize macrobend loss at large and small bend diameters. The optical fiber includes an outer cladding region that surrounds and is directly adjacent to the trench cladding region and an optional offset cladding region between the trench cladding region and the core region. In some embodiments, the trench cladding region has a relative refractive index that decreases monotonically from the inner radius to the outer radius. The monotonic decrease in relative refractive index may have a constant slope. The low macrobend loss at large and small diameters makes the optical fibers well suited for space-constrained deployment environments, such as data centers.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: January 2, 2024
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Pushkar Tandon
  • Publication number: 20230417984
    Abstract: An optical fiber includes a core region having a relative refractive index profile ?1 with a maximum relative refractive index ?1max in a range from 0.20% to 0.50%, and a surrounding cladding region that includes a triangular trench cladding region and an outer cladding region, and a relative refractive index ?3 with a minimum relative refractive index ?3min greater than ?0.60% and less than 0.00%, and a trench volume greater than 30% ?m2. The outer cladding region has a relative refractive index ?4 in a range from 0.01% to 0.06% and a chlorine concentration greater than 1500 ppm. The optical fiber has a mode field diameter at 1310 nm of greater than 9.0 microns, a cable cutoff wavelength of less than 1260 nm, a zero dispersion wavelength between 1300 nm and 1324 nm, and low macrobend loss.
    Type: Application
    Filed: June 20, 2023
    Publication date: December 28, 2023
    Inventors: Snigdharaj Kumar Mishra, Pushkar Tandon