Patents by Inventor Qasem Ahmed Qasem

Qasem Ahmed Qasem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133017
    Abstract: A method for coating a substrate with a Co-Pi modified BiVO4/WO3 heterostructure film includes direct current reactive sputtering tungsten (W) onto a substrate in a gaseous mixture containing oxygen to form a tungsten trioxide (WO3) film, direct current reactive sputtering bismuth (Bi) onto the tungsten trioxide (WO3) film in a gaseous mixture containing oxygen to form a dibismuth trioxide (Bi2O3) film, drop-casting a vanadyl acetylacetonate solution onto the Bi2O3 film and heating at a temperature of at least 450° C. in ambient air to convert the Bi2O3 film to a BiVO4 film, and photoelectrochemically coating the BiVO4 film with a cobalt-phosphate (Co-Pi) to form a modified film on the surface of the substrate. A photoanode containing the Co-Pi modified BiVO4/WO3 heterostructure film prepared by the method, and its application in water splitting.
    Type: Application
    Filed: October 23, 2022
    Publication date: April 25, 2024
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Amar Kamal Mohmeadkhair SALIH, Qasem Ahmed Qasem DRMOSH, Tarek KANDIEL, Zain Hassan YAMANI
  • Patent number: 11492257
    Abstract: A method of forming an alkali metal-doped calcium-SiAlON material is provided. The method includes mixing calcium-SiAlON powder and an alkali metal hydroxide to form a reaction mixture. The mixture further includes spark plasma sintering (SPS) the reaction mixture at 800 to 940 degrees Celsius (° C.) to form the alkali metal-doped calcium-SiAlON material. The alkali metal hydroxide is present in an amount of 0.1 to 10 weight percentage (wt. %), based on a total weight of the reaction mixture.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: November 8, 2022
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Abbas Saeed Hakeem, Qasem Ahmed Qasem Drmosh, Natalia Anna Wójcik, Sharafat Ali, Amar Kamal Mohamedkhair
  • Patent number: 9947815
    Abstract: A plasmonic scattering nanomaterial comprising a substrate layer, a metal oxide layer in continuous contact with the substrate layer and silver nanoparticles with a diameter of 25-300 nm deposited on the metal oxide layer is disclosed. The silver nanoparticles have a broad size distribution and interparticle distances such that the silver nanoparticles plasmonically scatter light throughout the metal oxide layer with a near electric field strength of 1-30 V/m when excited by a light source having a wavelength in the range of 300-500 nm and/or 1000-1200 nm. In addition, a method for producing the nanomaterial by sputter deposition is disclosed as well as an appropriate thin film plasmonic solar cell comprising the nanomaterial with a solar efficiency of at least 10%.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 17, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mohammad Kamal Hossain, Qasem Ahmed Qasem
  • Publication number: 20180026146
    Abstract: A plasmonic scattering nanomaterial comprising a substrate layer, a metal oxide layer in continuous contact with the substrate layer and silver nanoparticles with a diameter of 25-300 nm deposited on the metal oxide layer is disclosed. The silver nanoparticles have a broad size distribution and interparticle distances such that the silver nanoparticles plasmonically scatter light throughout the metal oxide layer with a near electric field strength of 1-30 V/m when excited by a light source having a wavelength in the range of 300-500 nm and/or 1000-1200 nm. In addition, a method for producing the nanomaterial by sputter deposition is disclosed as well as an appropriate thin film plasmonic solar cell comprising the nanomaterial with a solar efficiency of at least 10%.
    Type: Application
    Filed: August 17, 2017
    Publication date: January 25, 2018
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Mohammad Kamal HOSSAIN, Qasem Ahmed Qasem
  • Patent number: 9773931
    Abstract: A plasmonic scattering nanomaterial comprising a substrate layer, a metal oxide layer in continuous contact with the substrate layer and silver nanoparticles with a diameter of 25-300 nm deposited on the metal oxide layer is disclosed. The silver nanoparticles have a broad size distribution and interparticle distances such that the silver nanoparticles plasmonically scatter light throughout the metal oxide layer with a near electric field strength of 1-30 V/m when excited by a light source having a wavelength in the range of 300-500 nm and/or 1000-1200 nm. In addition, a method for producing the nanomaterial by sputter deposition is disclosed as well as an appropriate thin film plasmonic solar cell comprising the nanomaterial with a solar efficiency of at least 10%.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: September 26, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mohammad Kamal Hossain, Qasem Ahmed Qasem
  • Publication number: 20160343887
    Abstract: A plasmonic scattering nanomaterial comprising a substrate layer, a metal oxide layer in continuous contact with the substrate layer and silver nanoparticles with a diameter of 25-300 nm deposited on the metal oxide layer is disclosed. The silver nanoparticles have a broad size distribution and interparticle distances such that the silver nanoparticles plasmonically scatter light throughout the metal oxide layer with a near electric field strength of 1-30 V/m when excited by a light source having a wavelength in the range of 300-500 nm and/or 1000-1200 nm. In addition, a method for producing the nanomaterial by sputter deposition is disclosed as well as an appropriate thin film plasmonic solar cell comprising the nanomaterial with a solar efficiency of at least 10%.
    Type: Application
    Filed: January 28, 2016
    Publication date: November 24, 2016
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mohammad Kamal Hossain, Qasem Ahmed Qasem
  • Patent number: 9034169
    Abstract: The method for detection of cyanide in water is a method for the detection of a highly toxic pollutant, cyanide, in water using ZnO2 nanoparticles synthesized locally by an elegant Pulsed Laser Ablation technique. ZnO2 nanoparticles having a median size of 4 nm are synthesized from pure zinc metal target under UV laser irradiation in a 1-10% H2O2 environment in deionized water. The synthesized ZnO2 nanoparticles are suspended in dimethyl formamide in the presence of Nafion, and then ultrasonicated to create a homogenous suspension, which is used to prepare a thin film of ZnO2 nanoparticles on a metal electrode. The electrode is used for cyanide detection.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 19, 2015
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Mohammed Ashraf Gondal, Qasem Ahmed Qasem Drmosh, Z. H. Yamani, Tawfik Abdo Saleh
  • Publication number: 20130203178
    Abstract: The method for detection of cyanide in water is a method for the detection of a highly toxic pollutant, cyanide, in water using ZnO2 nanoparticles synthesized locally by an elegant Pulsed Laser Ablation technique. ZnO2 nanoparticles having a median size of 4 nm are synthesized from pure zinc metal target under UV laser irradiation in a 1-10% H2O2 environment in deionized water. The synthesized ZnO2 nanoparticles are suspended in dimethyl formamide in the presence of Nafion, and then ultrasonicated to create a homogenous suspension, which is used to prepare a thin film of ZnO2 nanoparticles on a metal electrode. The electrode is used for cyanide detection.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Inventors: MOHAMMED ASHRAF GONDAL, QASEM AHMED QASEM DRMOSH, Z.H. YAMANI, TAWFIK ABDO SALEH
  • Publication number: 20110303050
    Abstract: The method for detection of cyanide in water is a method for the detection of a highly toxic pollutant, cyanide, in water using ZnO2 nanoparticles synthesized locally by an elegant Pulsed Laser Ablation technique. ZnO2 nanoparticles having a median size of 4 nm are synthesized from pure zinc metal target under UV laser irradiation in a 1-10% H2O2 environment in deionized water. The synthesized ZnO2 nanoparticles are suspended in dimethyl formamide in the presence of Nafion, and then ultrasonicated to create a homogenous suspension, which is used to prepare a thin film of ZnO2 nanoparticles on a metal electrode. The electrode is used for cyanide detection.
    Type: Application
    Filed: July 19, 2010
    Publication date: December 15, 2011
    Inventors: Mohammed Ashraf Gondal, Qasem Ahmed Qasem Drmosh, Z. H. Yamani, Tawfik Abdo Saleh