Patents by Inventor Qi Mo

Qi Mo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10295737
    Abstract: The present invention relates to the field of single-mode optical fibers and discloses a bending-insensitive, radiation-resistant single-mode optical fiber, sequentially including from inside to outside: a core, inner claddings, and an outer cladding, all made from a quartz material. The inner claddings comprise, from inside to outside, a first fluorine-doped inner cladding and a second fluorine-doped inner cladding. The core and the first fluorine-doped inner cladding are not doped with germanium. The respective concentrations of other metal impurities and phosphorus are less than 0.1 ppm. By mass percent, the core has a fluorine dopant content of 0-0.45% and a chlorine content of 0.01-0.10%; the first fluorine-doped inner cladding has a fluorine concentration of 1.00-1.55%; and the second fluorine-doped inner cladding has a fluorine concentration of 3.03-5.00%.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: May 21, 2019
    Assignee: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD
    Inventors: Qi Mo, Lijie Huang, Huang Yu, Cheng Liu, Wen Chen, Zhiqiang Yu, Dongxiang Wang, Bingfeng Cai, Liming Chen, Huiping Shi
  • Publication number: 20180299615
    Abstract: The present invention relates to the field of single-mode optical fibers and discloses a bending-insensitive, radiation-resistant single-mode optical fiber, sequentially including from inside to outside: a core, inner claddings, and an outer cladding, all made from a quartz material. The inner claddings comprise, from inside to outside, a first fluorine-doped inner cladding and a second fluorine-doped inner cladding. The core and the first fluorine-doped inner cladding are not doped with germanium. The respective concentrations of other metal impurities and phosphorus are less than 0.1 ppm. By mass percent, the core has a fluorine dopant content of 0-0.45% and a chlorine content of 0.01-0.10%; the first fluorine-doped inner cladding has a fluorine concentration of 1.00-1.55%; and the second fluorine-doped inner cladding has a fluorine concentration of 3.03-5.00%.
    Type: Application
    Filed: October 21, 2016
    Publication date: October 18, 2018
    Applicant: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD
    Inventors: Qi MO, Lijie HUANG, Huang YU, Cheng LIU, Wen CHEN, Zhiqiang YU, Dongxiang WANG, Bingfeng CAI, Liming CHEN, Huiping SHI
  • Patent number: 9739936
    Abstract: A low-loss few-mode fiber relates to the technical field of optical communications and related sensing devices, and includes, from inside to outside, a core layer (1), a fluorine-doped quartz inner cladding (2), a fluorine-doped quartz second core layer (3), a fluorine-doped quartz depressed cladding (4) and a fluorine-doped quartz outer cladding (5); germanium element is not doped within the core layer (1), the refractive index of the core layer (1) is in gradient distribution, and the distribution is a power-exponent distribution; the maximum value of difference in relative refractive index between the core layer (1) and the fluorine-doped quartz inner cladding (2) is 0.3% to 0.9%; the relative refractive index difference of the fluorine-doped quartz inner cladding (2) with respect to synthetic quartz is ?0.3% to ?0.5%; the difference in relative refractive index between the fluorine-doped quartz second core layer (3) and the fluorine-doped quartz inner cladding (2) is 0.05% to 0.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 22, 2017
    Assignees: WUHAN RESEARCH INSTITUTE OF POSTS AND TELECOMMUNICATIONS, FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD.
    Inventors: Qi Mo, Huang Yu, Wen Chen, Cheng Du, Zhiqiang Yu, Dongxiang Wang, Bingfeng Cai
  • Patent number: 9726817
    Abstract: Disclosed is a small-diameter polarization maintaining optical fiber, which relates to the field of special optical fibers. The small-diameter polarization maintaining optical fiber comprises a quartz optical fiber (5); the periphery thereof is provided with an inner coating (6) and an outer coating (8); the interior of the quartz optical fiber (5) is provided with an optical fiber core layer (1) and a quartz cladding (2); two stress zones (4) are arranged between the optical fiber core layer (1) and the quartz cladding (2); a buffer coating (7) is arranged between the inner coating (6) and the outer coating (8); the periphery of each stress zone (4) is provided with a buffer layer (3) which is concentric with the stress zone (4); when a working wavelength of a small-diameter polarization maintaining optical fiber is 1310 nm, the attenuation thereof reaches less than 0.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: August 8, 2017
    Assignee: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD.
    Inventors: Wenyong Luo, Zhijian Liu, Yili Ke, Qi Mo, Fuming Hu, Qiong Lei, Zhiwen Kang, Rong Dan, Lei Zhao
  • Publication number: 20170139129
    Abstract: Disclosed is a small-diameter polarization maintaining optical fiber, which relates to the field of special optical fibers. The small-diameter polarization maintaining optical fiber comprises a quartz optical fiber (5); the periphery thereof is provided with an inner coating (6) and an outer coating (8); the interior of the quartz optical fiber (5) is provided with an optical fiber core layer (1) and a quartz cladding (2); two stress zones (4) are arranged between the optical fiber core layer (1) and the quartz cladding (2); a buffer coating (7) is arranged between the inner coating (6) and the outer coating (8); the periphery of each stress zone (4) is provided with a buffer layer (3) which is concentric with the stress zone (4); when a working wavelength of a small-diameter polarization maintaining optical fiber is 1310 nm, the attenuation thereof reaches less than 0.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 18, 2017
    Applicant: FIBERHOME TELECOMMUNICATION TECHNOLOGIES CO., LTD.
    Inventors: WENYONG LUO, ZHIJIAN LIU, YILI KE, QI MO, FUMING HU, QIONG LEI, ZHIWEN KANG, RONG DAN, LEI ZHAO
  • Patent number: 9647413
    Abstract: Provided are a high-efficiency parallel-beam laser optical fiber drawing method and optical fiber, the method including the steps of: S1: providing base planes on the side surfaces of both a gain optical fiber preform and a pump optical fiber preform, inwardly processing the base plane of the gain optical fiber preform to make a plurality of ribs protrude, and inwardly providing a plurality of grooves on the base plane of the pump optical fiber preform; S2: embedding the ribs into the grooves, tapering and fixing one end of the combination of the ribs and the grooves to form a parallel-beam laser optical fiber preform; S3: drawing the parallel-beam laser optical fiber preform into parallel-beam laser optical fibers. The process has high repeatability, and the obtained parallel-beam laser achieves peelability of pump optical fibers in a set area, thus facilitating multi-point pump light injection of parallel-beam laser optical fibers.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: May 9, 2017
    Assignee: Fiberhome Telecommunication Technologies Co., Ltd.
    Inventors: Cheng Du, Wei Chen, Shiyu Li, Yili Ke, Qi Mo, Tao Zhang, Wenyong Luo, Kun Du, Rong Dan
  • Publication number: 20170115450
    Abstract: A low-loss few-mode fiber relates to the technical field of optical communications and related sensing devices, and includes, from inside to outside, a core layer (1), a fluorine-doped quartz inner cladding (2), a fluorine-doped quartz second core layer (3), a fluorine-doped quartz depressed cladding (4) and a fluorine-doped quartz outer cladding (5); germanium element is not doped within the core layer (1), the refractive index of the core layer (1) is in gradient distribution, and the distribution is a power-exponent distribution; the maximum value of difference in relative refractive index between the core layer (1) and the fluorine-doped quartz inner cladding (2) is 0.3% to 0.9%; the relative refractive index difference of the fluorine-doped quartz inner cladding (2) with respect to synthetic quartz is ?0.3% to ?0.5%; the difference in relative refractive index between the fluorine-doped quartz second core layer (3) and the fluorine-doped quartz inner cladding (2) is 0.05% to 0.
    Type: Application
    Filed: November 3, 2015
    Publication date: April 27, 2017
    Inventors: QI MO, HUANG YU, WEN CHEN, CHENG DU, ZHIQIANG YU, DONGXIANG WANG, BINGFENG CAI
  • Publication number: 20160181758
    Abstract: Provided are a high-efficiency parallel-beam laser optical fiber drawing method and optical fiber, the method including the steps of: S1: providing base planes on the side surfaces of both a gain optical fiber preform and a pump optical fiber preform, inwardly processing the base plane of the gain optical fiber preform to make a plurality of ribs protrude, and inwardly providing a plurality of grooves on the base plane of the pump optical fiber preform; S2: embedding the ribs into the grooves, tapering and fixing one end of the combination of the ribs and the grooves to form a parallel-beam laser optical fiber preform; S3: drawing the parallel-beam laser optical fiber preform into parallel-beam laser optical fibers. The process has high repeatability, and the obtained parallel-beam laser achieves peelability of pump optical fibers in a set area, thus facilitating multi-point pump light injection of parallel-beam laser optical fibers.
    Type: Application
    Filed: August 21, 2014
    Publication date: June 23, 2016
    Inventors: Cheng DU, Wei CHEN, Shiyu LI, Yili KE, Qi MO, Tao ZHANG, Wenyong LUO, Kun DU, Rong DAN
  • Patent number: 8947432
    Abstract: One embodiment of the invention sets forth a mechanism for interleaving consecutive display frames rendered at complementary reduced resolutions. The GPU driver configures a command stream associated with a frame received from a graphics application for reduced frame rendering. The command stream specifies a nominal resolution at which the frame should be rendered. The reduced resolution associated with the frame is determined based on the reduced resolution of an immediately preceding frame (i.e., the complementary reduced resolution), if one exists, or on GPU configuration information. The GPU driver then modifies the command stream to specify the reduced resolution. The GPU driver also inserts an upscale command sequence specifying the nominal resolution into the command stream. Once the command stream is configured in such a manner, the GPU driver transmits the command stream to the GPU for reduced rendering.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: February 3, 2015
    Assignee: NVIDIA Corporation
    Inventors: Jonathan Bakdash, Qi Mo, David Luebke, Douglas A. Voorhies
  • Patent number: 8294714
    Abstract: One embodiment of the invention sets forth a mechanism for interleaving consecutive display frames rendered at complementary reduced resolutions. The GPU driver configures a command stream associated with a frame received from a graphics application for reduced frame rendering. The command stream specifies a nominal resolution at which the frame should be rendered. The reduced resolution associated with the frame is determined based on the reduced resolution of an immediately preceding frame (i.e., the complementary reduced resolution), if one exists, or on GPU configuration information. The GPU driver then modifies the command stream to specify the reduced resolution. The GPU driver also inserts an upscale command sequence specifying the nominal resolution into the command stream. Once the command stream is configured in such a manner, the GPU driver transmits the command stream to the GPU for reduced rendering.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: October 23, 2012
    Assignee: NVIDIA Corporation
    Inventors: Jonathan Bakdash, Qi Mo, David Luebke, Douglas A. Voorhies