Patents by Inventor Qianggao Hu

Qianggao Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230299867
    Abstract: Provided are a communication station, an optical communication system, a data transmission method, and a storage medium. The communication station is a first station including: a first reconfigurable optical add-drop multiplexing ROADM device, including a first port used to connect a cable in a first direction of a network; a second ROADM device connected to the first ROADM device and including a second port which may be used to connect a cable in a second direction of the network being different from the first direction; an optical protection device connected to each of the first and second ROADM devices and used to control the first station to transmit communication with a second station for a corresponding service in the first direction corresponding to the first ROADM device, or to transmit communication with the second station for a corresponding service in the second direction corresponding to the second ROADM device.
    Type: Application
    Filed: December 22, 2020
    Publication date: September 21, 2023
    Inventors: Li Xiao, Jiekui Yu, Gang Lu, Zhaoxia Liu, Qianggao Hu, Liyan Huang
  • Publication number: 20220294531
    Abstract: Disclosed are an optical module, an optical communication device and an optical transmission system. The optical module includes a housing; a main board where are arrange a first transmitting unit and a first receiving unit; a first optical circulator, a first port of which is connected to an output end of the first transmitting unit, and a third port of which is connected to an input end of the first receiving unit; and a first optical fiber adapter connected to a second port of the first optical circulator, wherein an optical signal from the output end of the first transmitting unit is transmitted to the second port along the first port of the first optical circulator; and the first optical fiber adapter receives an optical signal input from outside, and transmits it to the third port along the second port of the first optical circulator.
    Type: Application
    Filed: December 5, 2019
    Publication date: September 15, 2022
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Hu Zhu, Liping Sun, Yongan Fu, Yong Luo, Qianggao Hu
  • Patent number: 10416379
    Abstract: An arrayed waveguide grating based hybrid integrated laser has an adjustable external cavity. The waveguide includes a semiconductor gain die and an optical waveguide chip. The optical waveguide chip includes an arrayed waveguide grating and an arrayed waveguide reflection-controllable component. A resonant cavity is formed by the output end reflection-controllable arrayed waveguide grating chip and the semiconductor gain die. An output wavelength of the laser can be adjusted by changing a driving condition of the reflection-controllable component. The output wavelength is determined by a center wavelength of each channel of the arrayed waveguide grating.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: September 17, 2019
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Yanfeng Fu, Kun Qian, Di Zhang, Xuesheng Tang, Shenglei Hu, Yi Tang, Di Li, Weidong Ma, Qianggao Hu
  • Patent number: 10256606
    Abstract: A wavelength-tunable external cavity laser comprises a semiconductor optical amplifier chip and a laser external cavity, the laser external cavity comprising a grid filter, a phase adjustor and a silicon-based micro-ring chip, the grid filter and the silicon-based micro-ring chip constituting a wavelength-tunable optical filter which implements wavelength tuning by spectral tuning of the grid filter and/or the silicon-based micro-ring chip. A micro-ring filter in the silicon-based micro-ring chip of the tunable external-cavity laser is manufactured by adopting a mature silicon light technology, which can greatly reduce a manufacturing difficulty of the adjustable filter, and reduce the manufacturing cost of a device. An existing external-cavity adjustable technology platform may be used for smooth transition, so as to improve the degree of integration of this type of device and simplify a preparation process.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 9, 2019
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Shenglei Hu, Yanfeng Fu, Yi Tang, Di Zhang, Shiyu Li, Xuesheng Tang, Kun Qian, Weidong Ma, Qianggao Hu
  • Patent number: 10205520
    Abstract: Embodiments of the present invention relate to method and device for measuring optical signal-to-noise ratio (OSNR). A method for measuring an OSNR of a signal of interest may comprise: obtaining spectrum of the signal of interest, the spectrum including power spectrum density distribution of the signal of interest in a channel bandwidth B; obtaining spectrum of a comparative signal that has the same spectrum characteristics as but different OSNR than the signal of interest, the spectrum including power spectrum density distribution of the comparative signal in the channel bandwidth B; and calculating the OSNR of the signal of interest by using the spectrum of the signal of interest and the spectrum of a comparative signal.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: February 12, 2019
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Shuang Chen, Liping Sun, Qianggao Hu, Yan Chen, Hui Xie, Qingyan Yue, Fei Liang, Yin Zhang, Hehui Wu
  • Patent number: 10048445
    Abstract: A multicast exchange optical switch includes an input port device including M input ports, an output port device including N output ports, a diffractive beam splitter, an optical focusing component, and a 1×N array of reflective devices. The diffractive beam splitter diffracts each input signal beam from the input ports into at least N directions. The optical focusing component includes a first focusing lens and a second focusing lens. The first focusing lens focuses sub-beams from the respective input ports along the Y-axis direction having the same diffraction order. The second focusing lens focuses on the X-axis direction sub-beams from the same input port having different diffraction orders. The 1×N array of reflective devices is provided at the focal plane of the optical focusing component and each reflective device reflects a sub-beam from any one of the input ports to any one of the output ports.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: August 14, 2018
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Qianggao Hu, Liping Sun, Bo Zhang, Leilei Hu, Liu Yang, Yuan Zhang, Fei Liang
  • Patent number: 10050406
    Abstract: The present invention relates to an external cavity tunable laser and a cavity mode locking method thereof. In an embodiment, an external cavity tunable laser comprises a semiconductor amplifier having a partial reflective film provided on one end and an anti-reflective film provided on the other end, a cavity mirror provided at the anti-reflective end to define an external cavity therebetween, a large-range phasing assembly and a quick phasing assembly provided to adjust the optical length of the external cavity independently, an optical power detector provided to detect the optical power of the light output from the semiconductor amplifier, and a control unit in communication with the optical power detector, the large-range phasing assembly, and the quick phasing assembly.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: August 14, 2018
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Xuesheng Tang, Yanfeng Fu, Kun Qian, Yong Luo, Yizong Chen, Di Zhang, Qianggao Hu, Yi Tang, Chao Luo
  • Publication number: 20180191132
    Abstract: A wavelength-tunable external cavity laser comprises a semiconductor optical amplifier chip and a laser external cavity, the laser external cavity comprising a grid filter, a phase adjustor and a silicon-based micro-ring chip, the grid filter and the silicon-based micro-ring chip constituting a wavelength-tunable optical filter which implements wavelength tuning by spectral tuning of the grid filter and/or the silicon-based micro-ring chip. A micro-ring filter in the silicon-based micro-ring chip of the tunable external-cavity laser is manufactured by adopting a mature silicon light technology, which can greatly reduce a manufacturing difficulty of the adjustable filter, and reduce the manufacturing cost of a device. An existing external-cavity adjustable technology platform may be used for smooth transition, so as to improve the degree of integration of this type of device and simplify a preparation process.
    Type: Application
    Filed: December 15, 2015
    Publication date: July 5, 2018
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Shenglei Hu, Yanfeng Fu, Yi Tang, Di Zhang, Shiyu Li, Xuesheng Tang, Kun Qian, Weidong Ma, Qianggao Hu
  • Publication number: 20180172907
    Abstract: An arrayed waveguide grating based hybrid integrated laser has an adjustable external cavity. The waveguide includes a semiconductor gain die and an optical waveguide chip. The optical waveguide chip includes an arrayed waveguide grating and an arrayed waveguide reflection-controllable component. A resonant cavity is formed by the output end reflection-controllable arrayed waveguide grating chip and the semiconductor gain die. An output wavelength of the laser can be adjusted by changing a driving condition of the reflection-controllable component. The output wavelength is determined by a center wavelength of each channel of the arrayed waveguide grating.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 21, 2018
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Yanfeng Fu, Kun Qian, Di Zhang, Xuesheng Tang, Shenglei Hu, Yi Tang, Di Li, Weidong Ma, Qianggao Hu
  • Patent number: 9991954
    Abstract: Disclosed is a method for monitoring the wavelength of a tunable laser device of user by local OLT. The method is applied to a wavelength division multiplexing passive optical network framework. The framework comprises an ONU, a first athermal array waveguide grating, a transmission optical fiber, a second athermal array waveguide grating and the OLT, which are sequentially connected. ONU comprises tunable wavelength optical transmitters. The method comprises: starting handshaking is carried out between the OLT and the ONU; and the OLT carries out wavelength drifting monitoring during operation of the ONU. Wavelength adjustment can be carried out on the multi-channel tunable laser device in an external auxiliary monitoring environment, thus channel wavelengths of the multi-channel tunable laser device can be accurately controlled, and the requirement for calibration accuracy of channels of the tunable laser device at the ONU is greatly reduced.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: June 5, 2018
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Yanfeng Fu, Qianggao Hu, Di Zhang, Shenglei Hu, Yong Luo
  • Patent number: 9912120
    Abstract: A Raman pump laser control apparatus comprises a wavelength division multiplexer, a tap coupler, a photoelectric detector, an analog amplification processing circuit, an analog-to-digital converter, a fast Raman pump control unit, an digital-analog converter, and a Raman pump laser. The fast Raman pump control unit, after having known anticipated output light power of the Raman pump laser, based on a direct relationship between a current anticipated output light power of the Raman pump laser and input digital quantity that is needed by the digital-analog converter, uses a feedforward control mechanism so that actual output light power of the Raman pump laser fastly approximates the anticipated output light power thereof, and then synchronously combines with a feedback control mechanism so that the actual output light power of the Raman pump laser is precisely locked on the anticipated output light power, thereby achieving fast and precise control of the Raman pump laser.
    Type: Grant
    Filed: December 25, 2013
    Date of Patent: March 6, 2018
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Yanfeng Fu, Yong Luo, Di Zhang, Xuesheng Tang, Kun Qian, Yi Tang, Shenglei Hu, Qianggao Hu
  • Publication number: 20170359121
    Abstract: Embodiments of the present invention relate to method and device for measuring optical signal-to-noise ratio (OSNR). A method for measuring an OSNR of a signal of interest may comprise: obtaining spectrum of the signal of interest, the spectrum including power spectrum density distribution of the signal of interest in a channel bandwidth B; obtaining spectrum of a comparative signal that has the same spectrum characteristics as but different OSNR than the signal of interest, the spectrum including power spectrum density distribution of the comparative signal in the channel bandwidth B; and calculating the OSNR of the signal of interest by using the spectrum of the signal of interest and the spectrum of a comparative signal.
    Type: Application
    Filed: August 3, 2017
    Publication date: December 14, 2017
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Shuang Chen, Liping Sun, Qianggao Hu, Yan Chen, Hui Xie, Qingyan Yue, Fei Liang, Yin Zhang, Hehui Wu
  • Publication number: 20170315300
    Abstract: A multicast exchange optical switch includes an input port device including M input ports, an output port device including N output ports, a diffractive beam splitter, an optical focusing component, and a 1×N array of reflective devices. The diffractive beam splitter diffracts each input signal beam from the input ports into at least N directions. The optical focusing component includes a first focusing lens and a second focusing lens. The first focusing lens focuses sub-beams from the respective input ports along the Y-axis direction having the same diffraction order. The second focusing lens focuses on the X-axis direction sub-beams from the same input port having different diffraction orders. The 1×N array of reflective devices is provided at the focal plane of the optical focusing component and each reflective device reflects a sub-beam from any one of the input ports to any one of the output ports.
    Type: Application
    Filed: December 18, 2014
    Publication date: November 2, 2017
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Qianggao HU, Liping SUN, Bo ZHANG, Leilei HU, Liu YANG, Yuan ZHANG, Fei LIANG
  • Patent number: 9720180
    Abstract: A multicast optical switch based on free-space transmission comprises a 1×M input collimator array, a light splitting device, an optical distance compensation device, a spot transformation device, a 1×N output collimator array and a reflector array which are arranged in sequence. The 1×N output collimator array corresponds to reflector array. The light splitting device is provided with a light splitting surface and a reflection surface, and by means of light splitting surface and reflection surface, light splitting and beam splitting of n times are carried out on input signals of 1×M input collimator array, and then N beams of sub-signal light are generated. The optical distance compensation device compensates optical distance differences among M×N sub-signal light beams produced by light splitting device. The M×N sub-signal light beams are focused to be 1×N light spots through light spot conversion device, and then 1×N light spots are reflected to reflector array.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: August 1, 2017
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Qianggao Hu, Liping Sun, Bo Zhang, Leilei Hu, Liu Yang, Hui Xie, Rui Yang, Zhilin Yuan, Yuan Zhang
  • Publication number: 20170187163
    Abstract: The present invention relates to an external cavity tunable laser and a cavity mode locking method thereof. In an embodiment, an external cavity tunable laser comprises a semiconductor amplifier having a partial reflective film provided on one end and an anti-reflective film provided on the other end, a cavity mirror provided at the anti-reflective end to define an external cavity therebetween, a large-range phasing assembly and a quick phasing assembly provided to adjust the optical length of the external cavity independently, an optical power detector provided to detect the optical power of the light output from the semiconductor amplifier, and a control unit in communication with the optical power detector, the large-range phasing assembly, and the quick phasing assembly.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Xuesheng Tang, Yanfeng Fu, Kun Qian, Yong Luo, Yizong Chen, Di Zhang, Qianggao Hu, Yi Tang, Chao Luo
  • Publication number: 20170170898
    Abstract: Disclosed is a method for monitoring the wavelength of a tunable laser device of user by local OLT. The method is applied to a wavelength division multiplexing passive optical network framework. The framework comprises an ONU, a first athermal array waveguide grating, a transmission optical fiber, a second athermal array waveguide grating and the OLT, which are sequentially connected. ONU comprises tunable wavelength optical transmitters. The method comprises: starting handshaking is carried out between the OLT and the ONU; and the OLT carries out wavelength drifting monitoring during operation of the ONU. Wavelength adjustment can be carried out on the multi-channel tunable laser device in an external auxiliary monitoring environment, thus channel wavelengths of the multi-channel tunable laser device can be accurately controlled, and the requirement for calibration accuracy of channels of the tunable laser device at the ONU is greatly reduced.
    Type: Application
    Filed: March 31, 2014
    Publication date: June 15, 2017
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Yanfeng Fu, Qianggao Hu, Di Zhang, Shenglei Hu, Yong Luo
  • Publication number: 20170025819
    Abstract: A Raman pump laser control apparatus comprises a wavelength division multiplexer, a tap coupler, a photoelectric detector, an analogue amplification processing circuit, an analogue-to-digital converter, a fast Raman pump control unit, an digital-analog converter, and a Raman pump laser. The fast Raman pump control unit, after having known anticipated output light power of the Raman pump laser, based on a direct relationship between a current anticipated output light power of the Raman pump laser and input digital quantity that is needed by the digital-analog converter, uses a feedforward control mechanism so that actual output light power of the Raman pump laser fastly approximates the anticipated output light power thereof, and then synchronously combines with a feedback control mechanism so that the actual output light power of the Raman pump laser is precisely locked on the anticipated output light power, thereby achieving fast and precise control of the Raman pump laser.
    Type: Application
    Filed: December 25, 2013
    Publication date: January 26, 2017
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Yanfeng Fu, Yong Luo, Di Zhang, Xuesheng Tang, Kun Qian, Yi Tang, Shenglei Hu, Qianggao Hu
  • Publication number: 20160291255
    Abstract: A multicast optical switch based on free-space transmission comprises a 1×M input collimator array, a light splitting device, an optical distance compensation device, a spot transformation device, a 1×N output collimator array and a reflector array which are arranged in sequence. The 1×N output collimator array corresponds to reflector array. The light splitting device is provided with a light splitting surface and a reflection surface, and by means of light splitting surface and reflection surface, light splitting and beam splitting of n times are carried out on input signals of 1×M input collimator array, and then N beams of sub-signal light are generated. The optical distance compensation device compensates optical distance differences among M×N sub-signal light beams produced by light splitting device. The M×N sub-signal light beams are focused to be 1×N light spots through light spot conversion device, and then 1×N light spots are reflected to reflector array.
    Type: Application
    Filed: November 25, 2013
    Publication date: October 6, 2016
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Qianggao Hu, Liping Sun, Bo Zhang, Leilei Hu, Liu Yang, Hui Xie, Rui Yang, Zhilin Yuan, Yuan Zhang
  • Patent number: 9397477
    Abstract: An external-cavity tunable laser with a flexible wavelength grid tuning function comprises a resonant cavity, collimating lenses, an optical isolator, and an output optical fiber. The resonant cavity comprises a semiconductor gain chip, a beam expander collimating lens, a combined liquid crystal tunable filter assembly, and a reflecting mirror. A current injected to the semiconductor gain chip is converted to broadband spontaneously radiating photons through electrical-to-optical conversion, and the photons are spread along a waveguide toward two sides. A part of photons with special frequencies go back and forth multiple times in the resonant cavity to form a laser after a threshold condition is met. The laser is collimated by the collimating lens, passes through the optical isolator, is coupled by the collimating lens, and enters the output optical fiber.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: July 19, 2016
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Yanfeng Fu, Di Zhang, Qianggao Hu, Xuesheng Tang, Shenglei Hu, Yi Tang, Kun Qian
  • Publication number: 20160056891
    Abstract: An OSNR measuring method, comprising: measuring a spectrum to be measured of an optical signal at a point to be measured of an optical transmission line, and acquiring the comparative spectrum of the optical signal within a channel wavelength range and at an SNR different from the SNR of the point to be measured; respectively integrating, within the channel wavelength range of the optical signal, the spectrum to be measured and the comparative spectrum to obtain total power Pspectrum to be measured and Pcomparative spectrum, and acquiring a noise factor F and a signal scale factor A; calculating, according to the total power, the noise factor and the signal scale factor, the noise power Pspectrum to be measured within the channel wavelength range of the optical signal, so as to obtain an OSNR of the point to be measured.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 25, 2016
    Applicant: Accelink Technologies Co., Ltd.
    Inventors: Shuang Chen, Liping Sun, Qianggao Hu, Yan Chen, Hui Xie, Qingyan Yue, Fei Liang, Yin Zhang, Hehui Wu