Patents by Inventor Qianqian Huang

Qianqian Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140203324
    Abstract: The present invention discloses a strip-shaped gate-modulated tunneling field effect transistor and a preparation method thereof, belonging to a field of field effect transistor logic device and the circuit in CMOS ultra large scale integrated circuit (ULSI). The tunneling field effect transistor includes a control gate, a gate dielectric layer, a semiconductor substrate, a highly-doped source region and a highly-doped drain region, where the highly-doped source region and the highly-doped drain region lie on both sides of the control gate, respectively, the control gate has a strip-shaped structure with a gate length greater than a gate width, and at one side thereof is connected to the highly-doped drain region and at the other side thereof extends laterally into the highly-doped source region; a region located below the control gate is a channel region; and the gate width of the control gate is less than twice width of a source depletion layer.
    Type: Application
    Filed: July 8, 2013
    Publication date: July 24, 2014
    Applicant: Peking University
    Inventors: Ru Huang, Qianqian Huang, Yingxin Qiu, Zhan Zhan, Yangyuan Wang
  • Patent number: 8710557
    Abstract: The present invention discloses a MOS transistor having a combined-source structure with low power consumption, which relates to a field of field effect transistor logic devices and circuits in CMOS ultra-large-scaled integrated circuits. The MOS transistor includes a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a Schottky source region, a highly-doped source region and a highly-doped drain region. An end of the control gate extends to the highly-doped source region to form a T shape, wherein the extending region of the control gate is an extending gate and the remaining region of the control gate is a main gate. The active region covered by the extending gate is a channel region, and material thereof is the substrate material. A Schottky junction is formed between the Schottky source region and the channel under the extending gate.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 29, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Xin Huang, Yangyuan Wang
  • Patent number: 8652929
    Abstract: The present invention discloses a CMOS device of reducing charge sharing effect and a fabrication method thereof. The present invention has an additional isolation for trapping carriers disposed right below an isolation region. the material of the additional isolation region is porous silicon. Since porous silicon is a functional material of spongy structure by electrochemistry anodic oxidizing monocrystalline silicon wafer, there are a large number of microvoids and dangling bonds on the surface layer of the porous silicon. These defects may form defect states in a center of forbidden band of the porous silicon, the defect states may trap carriers so as to cause an increased resistance. And with an increase of density of corrosion current, porosity increases, and defects in the porous silicon increase.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: February 18, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Fei Tan, Xia An, Qianqian Huang, Dong Yang, Xing Zhang
  • Patent number: 8526242
    Abstract: The present invention discloses a flash memory and the fabrication method and the operation method for the same. The flash memory comprises two memory cells of vertical channels, wherein a lightly-doped N type (or P type) silicon is used as a substrate; a P+ region (or an N+ region) is provided on each of the both ends of the silicon surface, and two channel regions perpendicular to the surface are provided therebetween; an N+ region (or a P+ region) shared by two channels is provided over the channels; a tunneling oxide layer, a polysilicon floating gate, a block oxide layer and a polysilicon control gate are provided sequentially on the outer sides of each channel from inside to outside; and the polysilicon floating gate and the polysilicon control gate are isolated from the P+ region by a sidewall oxide layer. The whole device is a two-bit TFET type flash memory with vertical channels which has better compatibility with prior-art standard CMOS process.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Peking University
    Inventors: Ru Huang, Yimao Cai, Shiqiang Qin, Qianqian Huang, Poren Tang, Yu Tang, Gengyu Yang
  • Patent number: 8507959
    Abstract: The present invention discloses a combined-source MOS transistor with a Schottky Barrier and a comb-shaped gate structure, and a method for manufacturing the same.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yangyuan Wang
  • Publication number: 20130161757
    Abstract: The present invention discloses a CMOS device of reducing charge sharing effect and a fabrication method thereof. The present invention has an additional isolation for trapping carriers disposed right below an isolation region. the material of the additional isolation region is porous silicon. Since porous silicon is a functional material of spongy structure by electrochemistry anodic oxidizing monocrystalline silicon wafer, there are a large number of microvoids and dangling bonds on the surface layer of the porous silicon. These defects may form defect states in a center of forbidden band of the porous silicon, the defect states may trap carriers so as to cause an increased resistance. And with an increase of density of corrosion current, porosity increases, and defects in the porous silicon increase.
    Type: Application
    Filed: April 16, 2012
    Publication date: June 27, 2013
    Inventors: Ru Huang, Fei Tan, Xia An, Qianqian Huang, Dong Yang, Xing Zhang
  • Publication number: 20130119445
    Abstract: A CMOS device for reducing a radiation-induced charge collection and a method for fabricating the same. In the CMOS device, a heavily doped charge collection-suppressed region is disposed directly under the source region and the drain region. The region has a doping type opposite that of the source region and the drain region, and has a doping concentration not less than that of the source region and the drain region. The charge collection-suppressed region has a lateral part slightly less than or equal to that of the source region and the drain region, and has a lateral range toward to the channel not exceed the edges of the source region and the drain region. The CMOS device may greatly reduce a range of the funnel that appears under the action of a single particle, so that charges collected instantaneously under a force of an electric field may be reduced.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 16, 2013
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Fei Tan, Xia An, Qianqian Huang, Dong Yang, Xing Zhang
  • Publication number: 20120313154
    Abstract: The present invention discloses a MOS transistor having a combined-source structure with low power consumption, which relates to a field of field effect transistor logic devices and circuits in CMOS ultra-large-scaled integrated circuits. The MOS transistor includes a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a Schottky source region, a highly-doped source region and a highly-doped drain region. An end of the control gate extends to the highly-doped source region to form a T shape, wherein the extending region of the control gate is an extending gate and the remaining region of the control gate is a main gate. The active region covered by the extending gate is a channel region, and material thereof is the substrate material. A Schottky junction is formed between the Schottky source region and the channel under the extending gate.
    Type: Application
    Filed: October 14, 2011
    Publication date: December 13, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Xin Huang, Yangyuan Wang
  • Publication number: 20120267700
    Abstract: The present invention discloses a tunneling current amplification transistor, which relates to an area of field effect transistor logic devices in CMOS ultra large scale semiconductor integrated circuits (ULSI). The tunneling current amplification transistor includes a semiconductor substrate, a gate dielectric layer, an emitter, a drain, a floating tunneling base and a control gate, wherein the drain, the floating tunneling base and the control gate forms a conventional TFET structure, and a doping type of the emitter is opposite to that of the floating tunneling base. A position of the emitter is at the other side of the floating tunneling base with respect to the drain. A type of the semiconductor between the emitter and the floating tunneling base is the same as that of the floating tunneling base.
    Type: Application
    Filed: May 26, 2011
    Publication date: October 25, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Zhan Zhan, Qianqian Huang, Yangyuan Wang
  • Publication number: 20120223361
    Abstract: The present invention discloses a low-power consumption tunnelling field-effect transistor (TFET). The TFET according to the invention includes a source, a drain and a control gate, wherein the control gate extends towards the source to form a finger-type control gate, which includes an extended gate region and an original control gate region, and an active region covered by the extended gate region is also an channel region and is made of the substrate material. The invention employs a finger-shaped gate structure, and the source region of the TFET surrounds the channel so that the on-state current of the device is improved. In comparison with the conventional planar TFET, a higher on-state current and a steeper subthreshold slope may be obtained under the same process conditions and with the same active region size.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 6, 2012
    Inventors: Ru Huang, Zhan Zhan, Qianqian Huang, Yangyuan Wang
  • Publication number: 20120181584
    Abstract: The invention discloses a resistive field effect transistor (ReFET) having an ultra-steep subthreshold slope, which relates to a field of field-effect-transistor logic device and circuit in CMOS ultra-large-scale-integrated circuit (ULSI). The resistive field effect transistor comprises a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a doped source region and a doped drain region, wherein the control gate is configured to adopt a stacked gate structure in which a bottom layer or a bottom electrode layer, a middle layer or a resistive material layer, and a top layer or a top electrode layer are sequentially formed. Compared with the existing methods for breaking the conventional subthreshold slope limititation, the device of the invention has a larger on-current, a lower operation voltage, and a better subthreshold feature.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 19, 2012
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yangyuan Wang
  • Publication number: 20120181585
    Abstract: The present invention discloses a combined-source MOS transistor with a Schottky Barrier and a comb-shaped gate structure, and a method for manufacturing the same.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 19, 2012
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yangyuan Wang
  • Publication number: 20120168770
    Abstract: A heat dissipation structure of a chip in the field of microelectronics is provided. The heat dissipation structure includes a P-type superlattice layer and an N-type superlattice layer formed over an upper surface of the chip by oxidation isolation. The P-type superlattice and the N-type superlattice are isolated by silicon oxide. Through a contact hole the P-type superlattice is electrically connected to a metal layer that is applied with a low potential in the chip, and a metal layer to be connected with an external power source is formed over the P-type superlattice. Through a contact hole the N-type superlattice is electrically connected to a metal layer that is applied with a high-potential power source in the chip, and a metal layer to be connected with an external power source is formed over the N-type superlattice. The potential of the external power source connected with the P-type superlattice is lower than that of the external power source connected with the N-type superlattice.
    Type: Application
    Filed: November 18, 2011
    Publication date: July 5, 2012
    Inventors: Ru Huang, Xin Huang, Tianwei Zhang, Qianqian Huang, Shiqiang Qin
  • Publication number: 20120113726
    Abstract: The present invention discloses a flash memory and the fabrication method and the operation method for the same. The flash memory comprises two memory cells of vertical channels, wherein a lightly-doped N type (or P type) silicon is used as a substrate; a P+ region (or an N+ region) is provided on each of the both ends of the silicon surface, and two channel regions perpendicular to the surface are provided therebetween; an N+ region (or a P+ region) shared by two channels is provided over the channels; a tunneling oxide layer, a polysilicon floating gate, a block oxide layer and a polysilicon control gate are provided sequentially on the outer sides of each channel from inside to outside; and the polysilicon floating gate and the polysilicon control gate are isolated from the P+ region by a sidewall oxide layer. The whole device is a two-bit TFET type flash memory with vertical channels which has better compatibility with prior-art standard CMOS process.
    Type: Application
    Filed: March 7, 2011
    Publication date: May 10, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Yimao Cai, Shiqiang Qin, Qianqian Huang, Poren Tang, Yu Tang, Gengyu Yang