Patents by Inventor Qianwen Huang

Qianwen Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11735740
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: August 22, 2023
    Assignee: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Publication number: 20230191249
    Abstract: According to an embodiment of the present invention, there is provided an information processing method by computer comprising: a step of acquiring operation information relating to an input operation inputted into a player terminal, a step of acquiring game image data relating to an image of a game application generated by the player terminal while the input operation is performed on the player terminal, a step of generating operation information reproduction data for visually displaying the input operation included in the operation information on the player terminal on the basis of the operation information, and a step of synchronizing the operation information reproduction data and the game image data associated with the operation information reproduction data in response to a reproduction request from the player terminal, and reproducing and displaying them on the player terminal.
    Type: Application
    Filed: October 6, 2022
    Publication date: June 22, 2023
    Inventor: Qianwen HUANG
  • Patent number: 11631893
    Abstract: This disclosure provides a battery including a cathode an anode positioned opposite the cathode. The anode includes a hybrid artificial solid-electrolyte interphase (A-SEI) layer encapsulating the anode. The hybrid A-SEI layer includes a first active component, a second active component disposed on the first active component, and a plurality of carbon-containing aggregates interwoven throughout the first and second active components and configured to inhibit growth of Li dendritic structures from the anode towards the cathode. A separator is positioned between the anode and the cathode. The cathode includes a porous carbon-based structure configured to expand in a presence of polysulfide (PS) shuttle within one or more portions of the battery. An electrolyte is dispersed between the anode and the cathode and in contact with both the anode and the cathode. The plurality of carbon-containing aggregates can include a polymer, which includes a cross-linked polymeric network.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: April 18, 2023
    Assignee: Lyten, Inc.
    Inventors: Elena Rogojina, Qianwen Huang, Jerzy Gazda, Jeffrey Bell, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Publication number: 20230067032
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 2, 2023
    Applicant: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Patent number: 11539074
    Abstract: This disclosure provides a battery comprising a cathode and an anode positioned opposite the cathode. A hybrid artificial solid-electrolyte interphase (A-SEI) layer is deposited on the anode and includes a plurality of active components. A blended material is interwoven throughout the plurality of active components and configured to inhibit growth of Lithium (Li) dendritic structures from the anode to the cathode. The blended material includes a combination of crystalline sp2-bound carbon domains of graphene sheets and a plurality of flexible wrinkle areas positioned at joinder points of two of more of the crystalline sp2-bound carbon domains of graphene sheets and a polymeric matrix configured to bind the plurality of active components and the blended material together. An electrolyte is in contact with the hybrid A-SEI and the cathode and a separator is positioned between the anode and the cathode. The blended material includes curable carboxylate salts of metals.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: December 27, 2022
    Assignee: Lyten, Inc.
    Inventors: Elena Rogojina, Qianwen Huang, Jerzy Gazda, Jeffrey Bell, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Patent number: 11508966
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 22, 2022
    Assignee: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Patent number: 11489161
    Abstract: A composition of matter suitable for incorporation into a battery electrode is disclosed. In some implementations, the composition of matter may include pores that may be defined in size or shape by several carbonaceous particles. Each of the particles may have multiple regions such that adjacent regions are separated from each other by some of the pores. Deformable regions may be distributed throughout a perimeter of each of the particles, for example, to accommodate coalescence of multiple adjacent particles. The composition of matter may also include a plurality of aggregates and a plurality of agglomerates, where each aggregate includes a multitude of the particles joined together, and each agglomerate includes a multitude of the aggregates joined together.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: November 1, 2022
    Assignee: Lyten, Inc.
    Inventors: Anurag Kumar, Jeffrey Bell, Qianwen Huang, Jesse Baucom, You Li, John Thorne, Karel Vanheusden, Elena Rogojina, Jerzy Gazda
  • Patent number: 11398622
    Abstract: A battery is disclosed that includes an anode, a graded interface layer disposed on the anode, a cathode positioned opposite to the anode, an electrolyte, and a separator. The anode may output lithium ions during cycling of the battery. A graded interface layer may be disposed on the anode and include a tin fluoride layer. A tin-lithium alloy region may form between the tin fluoride layer and the anode. The tin-lithium alloy region may produce a lithium fluoride uniformly dispersed between the anode and the tin fluoride layer during operational cycling of the battery. The electrolyte may disperse throughout the cathode and the anode. The separator may be positioned between the anode and cathode. In some aspects, the battery may also include lithium electrodeposited on one or more exposed surfaces of the anode.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: July 26, 2022
    Assignee: Lyten, Inc.
    Inventors: Jerzy Gazda, Qianwen Huang, Elena Rogojina, You Li, Jesse Baucom, Jeffrey Bell, John Thorne, Anurag Kumar, Jingning Shan
  • Patent number: 11342561
    Abstract: A disclosed battery may include an anode, a polymeric network disposed over one or more exposed surfaces of the anode, a cathode positioned opposite to the anode, an electrolyte at least partially dispersed throughout the cathode, and a separator. The anode may include an alkali metal that can release alkali ions during operational discharge-charge cycling of the battery. The polymeric network may include carbonaceous materials grafted with fluorinated polymer chains cross-linked with each other. The fluorinated polymer chains may produce an alkali-metal containing fluoride in response to operational cycling of the battery. Formation of the alkali-metal containing fluoride may suppress alkali metal dendrite formation from the anode such that lithium is consumed to form lithium fluoride rather than forming lithium-containing dendritic structures. The separator may be positioned between the anode and the cathode.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: May 24, 2022
    Assignee: LytEn, Inc.
    Inventors: Elena Rogojina, Qianwen Huang, Jerzy Gazda
  • Publication number: 20220143697
    Abstract: A system for preparing nanoscale zero-valent iron by reverse filtration in a non-open inert atmosphere is provided including an inert gas bottle, a gas monitoring and buffering device, a main reaction device configured as a three-necked flask, a condensing device including a condenser tube and a cold source, a waste liquid collecting device configured as a waste liquid collecting bottle, a liquid sealing device including a second liquid sealing bottle connected with the waste liquid collecting bottle through a first connecting-pipe, and an extraction pressure adjusting device including a third triple valve and a vacuum pump, all of which are connected by pipelines in sequence. Three necks of the three-necked flask are respectively provided with a first triple valve, a single-hole rubber plug pierced with a liquid-taking pipe, and a second triple valve. The second liquid sealing bottle is connected with the third triple valve.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 12, 2022
    Inventors: Yong Liu, Qianwen Huang, Xiaowen Zhang, Yupeng Xie, Keyou Shi, Hao Chen, Shoufu Yu, Guowen Peng, Yifan Chen, Mi Li, Xiaoyan Wu, Zhijun Zhang, Qiucai Zhang
  • Patent number: 11309545
    Abstract: A composition of matter may include pores and non-tri-zone particles and tri-zone particles. In one implementation, each tri-zone particle may include carbon fragments intertwined with each other and separated from one another by mesopores. Each tri-zone particle may also include a deformable perimeter that may coalesce with adjacent non-tri-zone particles or tri-zone particles. In some aspects, the tri-zone particles may include aggregates formed by a multitude of the tri-zone particles joined together. In some aspects, mesopores may be interspersed throughout the aggregates. Each tri-zone particle may also include agglomerates, where each agglomerate includes a multitude of the aggregates joined together. In some aspects, macropores may be interspersed throughout the aggregates.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: April 19, 2022
    Assignee: LytEn, Inc.
    Inventors: Anurag Kumar, Jeffrey Bell, Qianwen Huang, Jesse Baucom, You Li, John Thorne, Karel Vanheusden, Elena Rogojina, Jerzy Gazda
  • Publication number: 20210367241
    Abstract: A composition of matter may include pores and non-tri-zone particles and tri-zone particles. In one implementation, each tri-zone particle may include carbon fragments intertwined with each other and separated from one another by mesopores. Each tri-zone particle may also include a deformable perimeter that may coalesce with adjacent non-tri-zone particles or tri-zone particles. In some aspects, the tri-zone particles may include aggregates formed by a multitude of the tri-zone particles joined together. In some aspects, mesopores may be interspersed throughout the aggregates. Each tri-zone particle may also include agglomerates, where each agglomerate includes a multitude of the aggregates joined together. In some aspects, macropores may be interspersed throughout the aggregates.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 25, 2021
    Applicant: Lyten, Inc.
    Inventors: Anurag Kumar, Jeffrey Bell, Qianwen Huang, Jesse Baucom, You Li, John Thorne, Karel Vanheusden, Elena Rogojina, Jerzy Gazda
  • Publication number: 20210359308
    Abstract: A battery is disclosed that includes an anode, a cathode positioned opposite to the anode, a protective sheath disposed on the cathode, a separator, and an electrolyte. The anode may be arranged in a lattice configuration and include carbonaceous materials. The separator may be disposed between the anode and cathode. The protective sheath may include a tri-functional epoxy compound and a di-amine oligomer-based compound that can chemically react with each other. In this way, the protective sheath may prevent polysulfide migration within the battery based on chemical binding between the protective sheath and one or more lithium-containing polysulfide intermediates. The electrolyte may disperse within the cathode and contact the anode. In one implementation, a polymeric network may be deposited over one or more exposed surfaces of the anode. The polymeric network may have fluorinated polymer chains grafted with carbonaceous materials and be cross-linked with each another.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Applicant: Lyten, Inc.
    Inventors: Qianwen Huang, Elena Rogojina, Jerzy Gazda, Anurag Kumar
  • Publication number: 20210359289
    Abstract: A battery is disclosed that includes an anode, a graded interface layer disposed on the anode, a cathode positioned opposite to the anode, an electrolyte, and a separator. The anode may output lithium ions during cycling of the battery. A graded interface layer may be disposed on the anode and include a tin fluoride layer. A tin-lithium alloy region may form between the tin fluoride layer and the anode. The tin-lithium alloy region may produce a lithium fluoride uniformly dispersed between the anode and the tin fluoride layer during operational cycling of the battery. The electrolyte may disperse throughout the cathode and the anode. The separator may be positioned between the anode and cathode. In some aspects, the battery may also include lithium electrodeposited on one or more exposed surfaces of the anode.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Applicant: Lyten, Inc.
    Inventors: Jerzy Gazda, Qianwen Huang, Elena Rogojina, You Li, Jesse Baucom, Jeffrey Bell, John Thorne, Anurag Kumar, Jingning Shan
  • Publication number: 20210359305
    Abstract: A disclosed battery may include an anode, a polymeric network disposed over one or more exposed surfaces of the anode, a cathode positioned opposite to the anode, an electrolyte at least partially dispersed throughout the cathode, and a separator. The anode may include an alkali metal that can release alkali ions during operational discharge-charge cycling of the battery. The polymeric network may include carbonaceous materials grafted with fluorinated polymer chains cross-linked with each other. The fluorinated polymer chains may produce an alkali-metal containing fluoride in response to operational cycling of the battery. Formation of the alkali-metal containing fluoride may suppress alkali metal dendrite formation from the anode such that lithium is consumed to form lithium fluoride rather than forming lithium-containing dendritic structures. The separator may be positioned between the anode and the cathode.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Applicant: Lyten, Inc.
    Inventors: Elena Rogojina, Qianwen Huang, Jerzy Gazda
  • Publication number: 20210359306
    Abstract: A disclosed battery may include an anode, a cathode positioned opposite to the anode, a protective sheath disposed on the cathode, an electrolyte, and a separator. A polymeric network disposed on the anode and may include carbonaceous materials grafted with a plurality of fluorinated polymer chains cross-linked into a lattice. The lattice may produce an alkali metal fluoride in response to operational cycling of the battery. The alkali metal fluoride may be configured to suppress alkali metal dendrite formation from the anode. The protective sheath disposed on the cathode may include a tri-functional epoxy compound and a di-amine oligomer-based compound that can chemically react with each other. The electrolyte may disperse throughout the cathode and contact with the anode. As a result, the electrolyte may transport the alkali ions between the cathode and the anode. The separator may be positioned between the anode and the cathode.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Applicant: Lyten, Inc.
    Inventors: Elena Rogojina, Qianwen Huang, Jerzy Gazda
  • Publication number: 20210351406
    Abstract: A composition of matter suitable for incorporation into a battery electrode is disclosed. In some implementations, the composition of matter may include pores that may be defined in size or shape by several carbonaceous particles. Each of the particles may have multiple regions such that adjacent regions are separated from each other by some of the pores. Deformable regions may be distributed throughout a perimeter of each of the particles, for example, to accommodate coalescence of multiple adjacent particles. The composition of matter may also include a plurality of aggregates and a plurality of agglomerates, where each aggregate includes a multitude of the particles joined together, and each agglomerate includes a multitude of the aggregates joined together.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 11, 2021
    Applicant: Lyten, Inc.
    Inventors: Anurag Kumar, Jeffrey Bell, Qianwen Huang, Jesse Baucom, You Li, John Thorne, Karel Vanheusden, Elena Rogojina, Jerzy Gazda
  • Publication number: 20210257666
    Abstract: Batteries including an electrolyte with a ternary solvent package are disclosed. In various implementations, a lithium-sulfur battery may include a cathode, an anode, and an electrolyte include a ternary solvent package. The anode may be positioned opposite to the cathode. The cathode may include a plurality of regions. Each region may be defined by two or more core-shell structures adjacent to and in contact with each other. The electrolyte may be interspersed throughout the cathode and be in contact with the anode. The ternary solvent package may include 1,2-Dimethoxyethane (DME), 1,3-Dioxolane (DOL), tetraethylene glycol dimethyl ether (TEGDME), and/or one or more additives, such as lithium nitrate (LiNO3), and 4,4?-thiobisbenzenethiol (TBT) or 2-mercaptobenzothiazole (MBT), and approximately 0.01 mol of dissolved lithium bis(trifluoromethanesulfonyl)imide (LiTFSI).
    Type: Application
    Filed: April 21, 2021
    Publication date: August 19, 2021
    Applicant: Lyten, Inc.
    Inventors: Qianwen Huang, Elena Rogojina, Jerzy Gazda, Anurag Kumar, Jeffrey Bell, Jesse Baucom, You Li
  • Publication number: 20210257667
    Abstract: Batteries including an electrolyte with a ternary solvent package are disclosed. In various implementations, a lithium-sulfur battery may include a cathode, an anode, and an electrolyte include a ternary solvent package. The anode may be positioned opposite to the cathode. The cathode may include a plurality of regions. Each region may be defined by two or more core-shell structures adjacent to and in contact with each other. The electrolyte may be interspersed throughout the cathode and be in contact with the anode. The ternary solvent package may include 1,2-Dimethoxyethane (DME), 1,3-Dioxolane (DOL), tetraethylene glycol dimethyl ether (TEGDME), and/or one or more additives, such as lithium nitrate (LiNO3), and 4,4?-thiobisbenzenethiol (TBT) or 2-mercaptobenzothiazole (MBT), and approximately 0.01 mol of dissolved lithium bis(trifluoromethanesulfonyl)imide (LiTFSI).
    Type: Application
    Filed: April 21, 2021
    Publication date: August 19, 2021
    Applicant: Lyten, Inc.
    Inventors: Jerzy Gazda, Qianwen Huang, Anurag Kumar, Jeffrey Bell, Jesse Baucom, You Li, Bruce Lanning, Elena Rogojina
  • Publication number: 20210242505
    Abstract: Batteries including an electrolyte with a ternary solvent package are disclosed. In various implementations, a lithium-sulfur battery may include a cathode, an anode, and an electrolyte include a ternary solvent package. The anode may be positioned opposite to the cathode. The cathode may include a plurality of regions. Each region may be defined by two or more core-shell structures adjacent to and in contact with each other. The electrolyte may be interspersed throughout the cathode and be in contact with the anode. The ternary solvent package may include 1,2-Dimethoxyethane (DME), 1,3-Dioxolane (DOL), tetraethylene glycol dimethyl ether (TEGDME), and/or one or more additives, such as lithium nitrate (LiNO3), and 4,4?-thiobisbenzenethiol (TBT) or 2-mercaptobenzothiazole (MBT), and approximately 0.01 mol of dissolved lithium bis(trifluoromethanesulfonyl)imide (LiTFSI).
    Type: Application
    Filed: April 21, 2021
    Publication date: August 5, 2021
    Applicant: Lyten, Inc.
    Inventors: Jerzy Gazda, Qianwen Huang, Anurag Kumar, Jeffrey Bell, Jesse Baucom, You Li, Bruce Lanning, Elena Rogojina