Patents by Inventor Qibing Pei

Qibing Pei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8237324
    Abstract: A bistable electroactive polymer transducer is provided for electrically actuated deformation of rigid electroactive polymer members. The polymers have glass transition temperatures (Tg) above ambient conditions and turn into rubbery elastomers above Tg and have high dielectric breakdown strength in the rubbery state. They can be electrically deformed to various rigid shapes with maximum strain greater than 100% and as high as 400%. The actuation is made bistable by cooling below Tg to preserve the deformation. The dielectric actuation mechanism includes a pair of compliant electrodes in contact with a dielectric elastomer which deforms when a voltage bias is applied between the pair of electrodes. In some of the configurations, the dielectric elastomer is also a shape memory polymer. The deformations of such bistable electroactive polymers can be repeated rapidly for numerous cycles.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 7, 2012
    Assignee: The Regents of the University of California
    Inventors: Qibing Pei, Zhibin Yu
  • Publication number: 20120169184
    Abstract: Described herein are transducers and their fabrication. The transducers convert between mechanical and electrical energy. Some transducers of the present invention include a pre-strained polymer. The pre-strain improves the conversion between electrical and mechanical energy. The present invention provides methods for fabricating electromechanical devices including one or more electroactive polymers.
    Type: Application
    Filed: February 1, 2012
    Publication date: July 5, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Ronald E. Pelrine, Roy D. Kornbluth, Qibing Pei, Seajin Oh, Jose P. Joseph
  • Patent number: 8093783
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: January 10, 2012
    Assignee: SRI International
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Patent number: 8042264
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: October 25, 2011
    Assignee: SRI International
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Publication number: 20110209337
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 1, 2011
    Applicant: Bayer MaterialScience AG
    Inventors: QIBING PEI, Ronald E. Pelrine, Marcus Rosenthal
  • Publication number: 20110155307
    Abstract: Described herein are transducers and their fabrication. The transducers convert between mechanical and electrical energy. Some transducers of the present invention include a pre-strained polymer. The pre-strain improves the conversion between electrical and mechanical energy. The present invention provides methods for fabricating electromechanical devices including one or more electroactive polymers.
    Type: Application
    Filed: March 18, 2011
    Publication date: June 30, 2011
    Applicant: SRI International
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh, Qibing Pei, Seajin Oh, Jose P. Joseph
  • Patent number: 7939900
    Abstract: Polymerizable anions and/or cations can be used as the ionically conductive species for the formation of a p-i-n junction in conjugated polymer thin films. After the junction is formed, the ions are polymerized in situ, and the junction is locked thereafter. The resulting polymer p-i-n junction diodes could have a high current rectification ratio. Electroluminescence with high quantum efficiency and low operating voltage may be produced from this locked junction. The diodes may also be used for photovoltaic energy conversion. In a photovoltaic cell, the built-in potential helps separate electron-hole pairs and increases the open-circuit voltage.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: May 10, 2011
    Assignee: The Regents of the University of California
    Inventor: Qibing Pei
  • Patent number: 7921541
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Grant
    Filed: July 29, 2007
    Date of Patent: April 12, 2011
    Assignee: SRI International
    Inventors: Qibing Pei, Ronald E. Pelrine, Marcus Rosenthal
  • Patent number: 7923064
    Abstract: Described herein are transducers and their fabrication. The transducers convert between mechanical and electrical energy. Some transducers of the present invention include a pre-strained polymer. The pre-strain improves the conversion between electrical and mechanical energy. The present invention provides methods for fabricating electromechanical devices including one or more electroactive polymers.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: April 12, 2011
    Assignee: SRI International
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh, Qibing Pei, Seajin Oh, Jose P. Joseph
  • Patent number: 7911115
    Abstract: The present invention relates to polymers, transducers and devices that convert between electrical and mechanical energy. When a voltage is applied to electrodes contacting an electroactive polymer, the polymer deflects. This deflection may be used to do mechanical work. Similarly, when the electroactive polymer deflects, an electric field is produced in the polymer. This electric field may be used to produce electrical energy. An active area is a portion of a polymer having sufficient electrostatic force to enable deflection of the portion and/or sufficient deflection to enable a change in electrostatic force. The present invention relates to transducers and devices including multiple active areas. The invention also relates to methods for actuating one or more active areas.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: March 22, 2011
    Assignee: SRI International
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh, Qibing Pei, Joseph S. Eckerle
  • Publication number: 20110025170
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Application
    Filed: May 24, 2010
    Publication date: February 3, 2011
    Applicant: SRI INTERNATIONAL
    Inventors: Marcus A. ROSENTHAL, Qibing PEI, Neville A. BONWIT
  • Publication number: 20100263181
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: SRI INTERNATIONAL
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Patent number: 7785656
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: August 31, 2010
    Assignee: SRI International
    Inventors: Qibing Pei, Ronald E. Pelrine, Marcus Rosenthal
  • Patent number: 7761981
    Abstract: The invention describes rolled electroactive polymer devices. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. A rolled electroactive polymer device converts between electrical and mechanical energy; and includes a rolled electroactive polymer and at least two electrodes to provide the mechanical/electrical energy conversion. Prestrain is typically applied to the polymer. In one embodiment, a rolled electroactive polymer device employs a mechanism, such as a spring, that provides a force to prestrain the polymer. Since prestrain improves mechanical/electrical energy conversion for many electroactive polymers, the mechanism thus improves performance of the rolled electroactive polymer device.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: July 27, 2010
    Assignee: SRI International
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Publication number: 20100171393
    Abstract: A bistable electroactive polymer transducer is provided for electrically actuated deformation of rigid electroactive polymer members. The polymers have glass transition temperatures (Tg) above ambient conditions and turn into rubbery elastomers above Tg and have high dielectric breakdown strength in the rubbery state. They can be electrically deformed to various rigid shapes with maximum strain greater than 100% and as high as 400%. The actuation is made bistable by cooling below Tg to preserve the deformation. The dielectric actuation mechanism includes a pair of compliant electrodes in contact with a dielectric elastomer which deforms when a voltage bias is applied between the pair of electrodes. In some of the transducers of the present invention, the dielectric elastomer is also a shape memory polymer. The deformations of such bistable electroactive polymers can be repeated rapidly for numerous cycles.
    Type: Application
    Filed: December 10, 2009
    Publication date: July 8, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Qibing Pei, Zhibin Yu
  • Publication number: 20100024180
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Application
    Filed: July 29, 2007
    Publication date: February 4, 2010
    Applicant: SRI INTERNATIONAL
    Inventors: Qibing Pei, Ronald E. Pelrine, Marcus Rosenthal
  • Publication number: 20100026143
    Abstract: The present invention relates to polymers, transducers and devices that convert between electrical and mechanical energy. When a voltage is applied to electrodes contacting an electroactive polymer, the polymer deflects. This deflection may be used to do mechanical work. Similarly, when the electroactive polymer deflects, an electric field is produced in the polymer. This electric field may be used to produce electrical energy. An active area is a portion of a polymer having sufficient electrostatic force to enable deflection of the portion and/or sufficient deflection to enable a change in electrostatic force. The present invention relates to transducers and devices including multiple active areas. The invention also relates to methods for actuating one or more active areas.
    Type: Application
    Filed: July 12, 2007
    Publication date: February 4, 2010
    Applicant: SRI INTERNATIONAL
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh, Qibing Pei, Joseph S. Eckerle
  • Publication number: 20090184606
    Abstract: The invention describes electroactive polymer devices in both rolled and unrolled configurations. The invention also describes employment of these devices in a wide array of applications and methods for their fabrication. An electroactive polymer device converts between electrical and mechanical energy; and, in one embodiment includes a rolled electroactive polymer and one or more electrodes to provide the mechanical/electrical energy conversion. In one embodiment, the electroactive polymer has a non-uniform surface on which an electrode having a non-uniform shape is disposed.
    Type: Application
    Filed: March 26, 2009
    Publication date: July 23, 2009
    Applicant: SRI INTERNATIONAL
    Inventors: Marcus A. Rosenthal, Qibing Pei, Neville A. Bonwit
  • Publication number: 20090095343
    Abstract: The synthesis, characterization, optical and electrochemical properties of a regioregular copolymer, poly(3-octylthiophene-2,5-diyl-co-3-decyloxythiophene-2,5-diyl) (POT-co-DOT), and an alternating regioregular copolymer poly{(9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-decyloxythien-2-yl)-2,1,3-benzothiadiazole]-5?,5?-diyl} (PF-co-DTB) is disclosed. The incorporation of 3-alkoxythiophene units onto the conjugated backbones enhances the electron-donating property of the polymer and lowers its bandgap. The fabrication and performance of photovoltaic cells with bulk heterojunction architecture based on blends of these copolymers with PCBM are also described.
    Type: Application
    Filed: September 15, 2008
    Publication date: April 16, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Qibing Pei, Yang Yang, Chenjun Shi
  • Patent number: 7468575
    Abstract: Described herein are transducers, their use and fabrication. The transducers convert between mechanical and electrical energy. The present invention further relates to compliant electrodes that conform to the shape of a polymer included in a transducer.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: December 23, 2008
    Assignee: SRI International
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh, Qibing Pei, Jose P. Joseph