Patents by Inventor Qidao LIN

Qidao LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220143559
    Abstract: Embodiments relate generally to a filter, for example, for attachment onto a gas detector device or a gas sensor, and attempt to improve the efficiency and service life of the filter. Embodiments typically comprise a dustproof membrane and a waterproof membrane. Some embodiments may also comprise a splash-proof cap and/or features to reduce negative pressure on the filters.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Qidao LIN, Feng LIANG, Yong TANG
  • Patent number: 11266954
    Abstract: Embodiments relate generally to a filter (110), for example, for attachment onto a gas detector device or a gas sensor, and attempt to improve the efficiency and service life of the filter (110). Embodiments typically comprise a dustproof membrane (114) and a waterproof membrane (113). Some embodiments may also comprise a splash-proof cap (130) and/or features to reduce negative pressure on the filter (110).
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: March 8, 2022
    Assignee: Honeywell International Inc.
    Inventors: Qidao Lin, Feng Liang, Yong Tang
  • Patent number: 10996197
    Abstract: Embodiments relate generally to systems and methods for shielding electrodes (204,205,504,505) within a photoionization detector (100). A photoionization detector (100) may comprise an ultraviolet radiation source (130); one or more detector electrodes (204,205,504,505); one or more collection surfaces (224,225,524,525) extending vertically from the detector electrodes (204,205,504,505); and a shielding material (206,506) located between the ultraviolet radiation source (130) and the one or more detector electrodes (204,205,504,505), wherein the ultraviolet radiation (130) does not directly impinge on at least a portion of the one or more detector electrodes (204,205,504,505). The one or more collection surfaces (224,225,524,525) may comprise a surface area that is not covered by the shielding material (206,506).
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: May 4, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Bo Chen, Qidao Lin, Guangli Xie, Zhanghua Wu
  • Patent number: 10942061
    Abstract: A photoionization detector (100) comprises an ultraviolet radiation source (130); one or more detector electrodes (204 and 205); and a shielding material (206) located between the ultraviolet radiation source (130) and the one or more detector electrodes (204 and 205), wherein the ultraviolet radiation (240) does not directly impinge on any part of the one or more detector electrodes (204 and 205). A method for gas detection comprises exposing a photoionization detector (100) to an environment containing a target gas; and shielding the one or more detector electrodes (204 and 205) from direct impingement from the ultraviolet radiation (240) via the shielding material (206).
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 9, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Bo Chen, Yuzhong June Wang, Qidao Lin, Guangli Xie, Zhanghua Wu
  • Publication number: 20200025716
    Abstract: Embodiments relate generally to systems and methods for shielding electrodes (204,205,504,505) within a photoionization detector (100). A photoionization detector (100) may comprise an ultraviolet radiation source (130); one or more detector electrodes (204,205,504,505); one or more collection surfaces (224,225,524,525) extending vertically from the detector electrodes (204,205,504,505); and a shielding material (206,506) located between the ultraviolet radiation source (130) and the one or more detector electrodes (204,205,504,505), wherein the ultraviolet radiation (130) does not directly impinge on at least a portion of the one or more detector electrodes (204,205,504,505). The one or more collection surfaces (224,225,524,525) may comprise a surface area that is not covered by the shielding material (206,506).
    Type: Application
    Filed: December 20, 2016
    Publication date: January 23, 2020
    Inventors: Bo CHEN, Qidao LIN, Guangli XIE, Zhanghua WU
  • Publication number: 20200018639
    Abstract: A photoionization detector (100) comprises an ultraviolet radiation source (130); one or more detector electrodes (204 and 205); and a shielding material (206) located between the ultraviolet radiation source (130) and the one or more detector electrodes (204 and 205), wherein the ultraviolet radiation (240) does not directly impinge on any part of the one or more detector electrodes (204 and 205). A method for gas detection comprises exposing a photoionization detector (100) to an environment containing a target gas; and shielding the one or more detector electrodes (204 and 205) from direct impingement from the ultraviolet radiation (240) via the shielding material (206).
    Type: Application
    Filed: December 20, 2016
    Publication date: January 16, 2020
    Inventors: Bo CHEN, Yuzhong June WANG, Qidao LIN, Guangli XIE, Zhanghua WU
  • Publication number: 20190232231
    Abstract: Embodiments relate generally to a filter (110), for example, for attachment onto a gas detector device or a gas sensor, and attempt to improve the efficiency and service life of the filter (110). Embodiments typically comprise a dustproof membrane (114) and a waterproof membrane (113). Some embodiments may also comprise a splash-proof cap (130) and/or features to reduce negative pressure on the filter (110).
    Type: Application
    Filed: October 5, 2016
    Publication date: August 1, 2019
    Inventors: Qidao LIN, Feng LIANG, Yong TANG