Patents by Inventor Qinfei LI

Qinfei LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10457604
    Abstract: The present invention discloses a micro-nano composite hollow structured nanometer material-modified high-durability concrete material, and according to mass parts, its raw material formula is as follows: cobaltosic oxide, 1000-1500 parts; cement, 1000-1300 parts; dioctyl sebacate, 1000-1500 parts; water, 800-1200 parts; nanocarbon, 1200-1800 parts; nano calcium carbonate, 35-50 parts; sodium silicate, 10-20 parts; micro-nano structured calcium molybdate, 50-80 parts; dipentaerythritol, 60-90 parts; and dioctyl ester 30-60 parts. The present invention enables existing concrete to be improved effectively and stably in terms of shrinkage, cracking resistance and rapid hardening; the synthetic chemical functional material may lower a chloride ion diffusion coefficient of the concrete by more than 50%, cut down shrinkage by more than 30%, and reduce the cracking risk of concrete products by 50%.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 29, 2019
    Assignee: University of Jinan
    Inventors: Xin Cheng, Ning Xie, Lichao Feng, Pengkun Hou, Zonghui Zhou, Qinfei Li
  • Publication number: 20190135700
    Abstract: The present invention discloses a micro-nano composite hollow structured nanometer material-modified high-durability concrete material, and according to mass parts, its raw material formula is as follows: cobaltosic oxide, 1000-1500 parts; cement, 1000-1300 parts; dioctyl sebacate, 1000-1500 parts; water, 800-1200 parts; nanocarbon, 1200-1800 parts; nano calcium carbonate, 35-50 parts; sodium silicate, 10-20 parts; micro-nano structured calcium molybdate, 50-80 parts; dipentaerythritol, 60-90 parts; and dioctyl ester 30-60 parts. The present invention enables existing concrete to be improved effectively and stably in terms of shrinkage, cracking resistance and rapid hardening; the synthetic chemical functional material may lower a chloride ion diffusion coefficient of the concrete by more than 50%, cut down shrinkage by more than 30%, and reduce the cracking risk of concrete products by 50%.
    Type: Application
    Filed: April 27, 2018
    Publication date: May 9, 2019
    Applicant: University of Jinan
    Inventors: Xin CHENG, Ning XIE, Lichao FENG, Pengkun HOU, Zonghui ZHOU, Qinfei LI