Patents by Inventor Qinfen Hao

Qinfen Hao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10439736
    Abstract: An optical switch control method and an apparatus are disclosed, to reduce impact on access performance by time overheads of optical link switching. The method includes: receiving an optical link establishment request sent by a computation node; determining whether the first optical link that needs to be established conflicts with the existing optical link; and if the first optical link that needs to be established conflicts with the existing optical link, determining whether to allow establishment of the first optical link, and establishing the first optical link if the establishment of the first optical link is allowed; or establishing the first optical link if the first optical link that needs to be established does not conflict with the existing optical link.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 8, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yongbing Huang, Tongtong Cao, Qinfen Hao, Shuncheng Pan
  • Patent number: 10117007
    Abstract: A routing node includes: at least one optical buffer, a switching node, and at least one transmission waveguide, where an output end of each optical buffer is connected to an input end of the switching node; each transmission waveguide is connected to an output end of the switching node. The optical buffer is configured to parse a received optical signal to obtain an identifier of a destination routing node, and send the identifier to the switching node. The switching node determines whether an output port required by the destination routing node is in an idle state or a busy state; and control the optical buffer to store the optical signal if the output port is in a busy state; or send the optical signal to the destination routing node if the output port is in an idle state.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: October 30, 2018
    Assignee: Huawei Technologies Co.., Ltd.
    Inventors: Liang Song, Wei Zhang, Qinfen Hao
  • Patent number: 10018789
    Abstract: A method and an apparatus for coupling an optical waveguide to a single-mode fiber are disclosed. The apparatus includes a substrate, a first optical waveguide, a single-mode fiber and a second optical waveguide. The first optical waveguide, the single-mode fiber and the second optical waveguide dispose on the substrate. One end of the single-mode fiber has an optical fiber taper structure. One end of the second optical waveguide is optically coupled to the first optical waveguide. Another end of the second optical waveguide is optically coupled to the single-mode fiber using the optical fiber taper structure of the single-mode fiber.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: July 10, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Pan Wang, Can Zhang, Qinfen Hao
  • Publication number: 20180109327
    Abstract: An optical switch control method and an apparatus are disclosed, to reduce impact on access performance by time overheads of optical link switching. The method includes: receiving an optical link establishment request sent by a computation node; determining whether the first optical link that needs to be established conflicts with the existing optical link; and if the first optical link that needs to be established conflicts with the existing optical link, determining whether to allow establishment of the first optical link, and establishing the first optical link if the establishment of the first optical link is allowed; or establishing the first optical link if the first optical link that needs to be established does not conflict with the existing optical link.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 19, 2018
    Inventors: Yongbing Huang, Tongtong Cao, Qinfen Hao, Shuncheng Pan
  • Patent number: 9832553
    Abstract: An optical interconnection system and method are provided. The system includes two or more basic components that are stacked and interconnected. The basic component includes an optical network layer and an electrical layer, where in each basic component, the optical network layer is electrically interconnected with the electrical layer, and the optical network layer of each basic component is optically interconnected with an optical network layer of an adjacent basic component, and through optical interconnection in three-dimensional space, a limitation on a quantity of stacked electrical layers is reduced, and efficiency of signal transmission is increased.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: November 28, 2017
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jiayong Zhang, Qinfen Hao, Yaoda Liu
  • Patent number: 9712901
    Abstract: An interconnection system, an apparatus, and a data transmission method. In the interconnection system, to-be-transmitted data is converted into a data packet in an optical signal form for transmission, and a control packet corresponding to the data packet is transmitted in an electrical signal form and includes routing information of the data packet. When the control packet passes through a switching node, the switching node directly determines, according to the routing information in the control packet, a neighboring node that serves as a next hop, and opens, in the switching node, an optical path used to transmit the data packet. Because no optical-to-electrical or electrical-to-optical conversion needs to be performed on the control packet and the data packet during an entire transmission procedure, problems of an extra delay and power consumption caused by electrical-optical-electrical conversion can be reduced, thereby improving data transmission efficiency.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: July 18, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xuecang Zhang, Qinfen Hao, Yaoda Liu
  • Publication number: 20170127161
    Abstract: A routing node includes: at least one optical buffer, a switching node, and at least one transmission waveguide, where an output end of each optical buffer is connected to an input end of the switching node; each transmission waveguide is connected to an output end of the switching node. The optical buffer is configured to parse a received optical signal to obtain an identifier of a destination routing node, and send the identifier to the switching node. The switching node determines whether an output port required by the destination routing node is in an idle state or a busy state; and control the optical buffer to store the optical signal if the output port is in a busy state; or send the optical signal to the destination routing node if the output port is in an idle state.
    Type: Application
    Filed: January 17, 2017
    Publication date: May 4, 2017
    Inventors: Liang Song, Wei Zhang, Qinfen Hao
  • Publication number: 20160313505
    Abstract: A polarization control device and a polarization control method, wherein the polarization control device includes a polarization beam splitting apparatus, a first phase shifter, a beam combiner, a first waveguide, a second waveguide, and a third waveguide, where the polarization beam splitting apparatus is configured to split input light into two beams of transverse electric (TE) mode light or two beams of transverse magnetic (TM) mode light, where the first phase shifter is configured to adjust a phase of light that is input to the first phase shifter, and the beam combiner is configured to adjust a split ratio of the beam combiner, and combine the two beams of TE mode light or the two beams of TM mode light that is input from a first input port and a second input port of the beam combiner, into one beam of TE mode light or one beam of TM mode light.
    Type: Application
    Filed: July 6, 2016
    Publication date: October 27, 2016
    Inventors: Xiao Ma, Qinfen Hao, Xiangyuan Deng
  • Publication number: 20160299294
    Abstract: A method and an apparatus for coupling an optical waveguide to a single-mode fiber are disclosed. The apparatus includes a substrate, a first optical waveguide, a single-mode fiber and a second optical waveguide. The first optical waveguide, the single-mode fiber and the second optical waveguide dispose on the substrate. One end of the single-mode fiber has an optical fiber taper structure. One end of the second optical waveguide is optically coupled to the first optical waveguide. Another end of the second optical waveguide is optically coupled to the single-mode fiber using the optical fiber taper structure of the single-mode fiber.
    Type: Application
    Filed: June 20, 2016
    Publication date: October 13, 2016
    Inventors: Pan Wang, Can Zhang, Qinfen Hao
  • Publication number: 20160301995
    Abstract: An optical interconnection system and method are provided. The system includes two or more basic components that are stacked and interconnected. The basic component includes an optical network layer and an electrical layer, where in each basic component, the optical network layer is electrically interconnected with the electrical layer, and the optical network layer of each basic component is optically interconnected with an optical network layer of an adjacent basic component, and through optical interconnection in three-dimensional space, a limitation on a quantity of stacked electrical layers is reduced, and efficiency of signal transmission is increased.
    Type: Application
    Filed: June 22, 2016
    Publication date: October 13, 2016
    Inventors: Jiayong Zhang, Qinfen Hao, Yaoda Liu
  • Publication number: 20160234577
    Abstract: A wavelength routing device is disclosed, wherein the device includes: a primary circuit, and a secondary circuit, where the primary circuit includes N 2×2 wavelength switches, the secondary circuit includes two N×N wavelength routers, and each N×N wavelength router includes at least one 2×2 wavelength switch, where a value of N is 2n, n being a positive integer; and an input port of each 2×2 wavelength switch in the primary circuit is connected to an input stage, an output port of each 2×2 wavelength switch is connected to an input port of an N×N wavelength router of the secondary circuit, and an output port of the N×N wavelength router of the secondary circuit is connected to an output stage.
    Type: Application
    Filed: April 19, 2016
    Publication date: August 11, 2016
    Applicant: HUAWEI TECHNOLOGIES CO.,LTD.
    Inventors: Chen Qiu, Qinfen Hao, Yaoda Liu
  • Publication number: 20160112780
    Abstract: An interconnection system, an apparatus, and a data transmission method. In the interconnection system, to-be-transmitted data is converted into a data packet in an optical signal form for transmission, and a control packet corresponding to the data packet is transmitted in an electrical signal form and includes routing information of the data packet. When the control packet passes through a switching node, the switching node directly determines, according to the routing information in the control packet, a neighboring node that serves as a next hop, and opens, in the switching node, an optical path used to transmit the data packet. Because no optical-to-electrical or electrical-to-optical conversion needs to be performed on the control packet and the data packet during an entire transmission procedure, problems of an extra delay and power consumption caused by electrical-optical-electrical conversion can be reduced, thereby improving data transmission efficiency.
    Type: Application
    Filed: October 30, 2015
    Publication date: April 21, 2016
    Inventors: Xuecang Zhang, Qinfen Hao, Yaoda Liu