Patents by Inventor Qingchun Yu

Qingchun Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240328022
    Abstract: This invention presents an electrochemical metallurgical technique for extracting metals and sulfur from metal sulfides, offering an adjustable composition and mechanical properties during electrode preparation. The metal sulfide anode, submerged in an electrolyte with a cathode made of materials like titanium, copper, stainless steel, lead, zinc, aluminum or graphite, undergoes electrolysis. This process oxidizes sulfur in the metal sulfide to the anode and releases metal ions into the electrolyte, where they're reduced at the cathode. The method yields metal at the cathode and sulfur at the anode, with minimal environmental impact, low investment, and straightforward process.
    Type: Application
    Filed: June 14, 2024
    Publication date: October 3, 2024
    Inventors: Jia Yang, Kanwen Hou, baohong Wei, Jiancheng Qian, Baoqiang Xu, Bin Yang, Dachun Liu, Wenlong Jiang, Yong Deng, Yifu Li, Yang Tian, Heng Xiong, Fei Wang, Qingchun Yu, Hongwei Yang
  • Patent number: 10982299
    Abstract: A method for comprehensively processing noble lead provided and utilizes two instances of vacuum distillation to realize an open circuit of arsenic, lead, antimony and bismuth and the high-efficiency enrichment of precious metals of gold and silver, and can obtain elemental arsenic, a lead-bismuth-antimony alloy, a silver alloy and a copper alloy, respectively. The lead-bismuth-antimony alloy, the silver alloy and the copper alloy are processed by oxidation refining, electrorefining and chlorination refining to obtain refined lead, refined antimony, antimony trioxide, electrolytic silver and electrolytic copper, and to realize gold enrichment. The entire process has advantages of high metal direct yield, low energy consumption, short flow chart, simple equipment, etc., and vacuum distillation belongs to a physical process in which the alloy can be separated only by means of the difference in saturated vapor pressure between the metals, without generation of wastewater, waste gas and waste residue.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: April 20, 2021
    Assignees: Kunming University of Science and Technology, Kunming Dingbang Technology Co., Ltd.
    Inventors: Bin Yang, Dachun Liu, Wenlong Jiang, Guozheng Zha, Baoqiang Xu, Weiping Dai, Yifu Li, Qingchun Yu, Xiumin Chen, Hongwei Yang, Yang Tian, Yong Deng, Fei Wang, Heng Xiong, Jia Yang, Tao Qu, Lingxin Kong
  • Publication number: 20200208238
    Abstract: A method for comprehensively processing noble lead provided and utilizes two instances of vacuum distillation to realize an open circuit of arsenic, lead, antimony and bismuth and the high-efficiency enrichment of precious metals of gold and silver, and can obtain elemental arsenic, a lead-bismuth-antimony alloy, a silver alloy and a copper alloy, respectively. The lead-bismuth-antimony alloy, the silver alloy and the copper alloy are processed by oxidation refining, electrorefining and chlorination refining to obtain refined lead, refined antimony, antimony trioxide, electrolytic silver and electrolytic copper, and to realize gold enrichment. The entire process has advantages of high metal direct yield, low energy consumption, short flow chart, simple equipment, etc., and vacuum distillation belongs to a physical process in which the alloy can be separated only by means of the difference in saturated vapor pressure between the metals, without generation of wastewater, waste gas and waste residue.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 2, 2020
    Inventors: Bin Yang, Dachun Liu, Wenlong Jiang, Guozheng Zha, Baoqiang Xu, Weiping Dai, Yifu Li, Qingchun Yu, Xiumin Chen, Hongwei Yang, Yang Tian, Yong Deng, Fei Wang, Heng Xiong, Jia Yang, Tao Qu, Lingxin Kong