Patents by Inventor QINGDONG MENG

QINGDONG MENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11420602
    Abstract: A rail train brake control system, comprising: a single vehicle brake control unit, a train brake control unit, a traction control unit and a communication control unit; the single vehicle brake control unit is provided in each vehicle of the rail train, the train brake control unit and the communication control unit are provided in the vehicles at both ends of the rail train, and the traction control unit is disposed in motor vehicles of a plurality of vehicles; and the single vehicle brake control unit, the train brake control unit, the traction control unit and the communication control unit implement communication by means of the gateway. The system can realize flexible marshalling of a train. Further disclosed is a train comprising the train brake control system.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: August 23, 2022
    Assignee: CRRC TANGSHAN CO., LTD.
    Inventors: Zhonghua Liu, Lei Chen, Chunjie Xie, Hongmei Xu, Bo Zhou, Keyu Cao, Peilei Fang, Qingdong Meng, Zhenshan Ji, Shan Gao, Liyun Shao
  • Patent number: 10914824
    Abstract: A lidar system can be used to measure a distance to one or more objects in a target region, such as by transmitting light towards the target and then receiving light reflected or scattered from the target. Received light can be stored as charge on storage elements such as capacitors, where received light can be stored on different storage elements depending on a time of arrival of the received light. A reduction in the number of storage elements can be achieved by providing one or more groups of storage elements, where each group of storage elements can correspond to a digit of a time of flight, where the time of flight can be round trip travel time of a light beam travelling from the lidar system to the target region and then back to the lidar system. Each group of storage elements can be arranged in a binary tree of a decimal tree configuration.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 9, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Libo Meng, Qingdong Meng, Wei Wang
  • Publication number: 20200156604
    Abstract: A rail train brake control system, comprising: a single vehicle brake control unit, a train brake control unit, a traction control unit and a communication control unit; the single vehicle brake control unit is provided in each vehicle of the rail train, the train brake control unit and the communication control unit are provided in the vehicles at both ends of the rail train, and the traction control unit is disposed in motor vehicles of a plurality of vehicles; and the single vehicle brake control unit, the train brake control unit, the traction control unit and the communication control unit implement communication by means of the gateway. The system can realize flexible marshalling of a train. Further disclosed is a train comprising the train brake control system.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 21, 2020
    Applicant: CRRC TANGSHAN CO., LTD.
    Inventors: Zhonghua LIU, Lei CHEN, Chunjie XIE, Hongmei XU, Bo ZHOU, Keyu CAO, Peilei FANG, Qingdong MENG, Zhenshan JI, Shan GAO, Liyun SHAO
  • Publication number: 20190154812
    Abstract: A lidar system can be used to measure a distance to one or more objects in a target region, such as by transmitting light towards the target and then receiving light reflected or scattered from the target. Received light can be stored as charge on storage elements such as capacitors, where received light can be stored on different storage elements depending on a time of arrival of the received light. A reduction in the number of storage elements can be achieved by providing one or more groups of storage elements, where each group of storage elements can correspond to a digit of a time of flight, where the time of flight can be round trip travel time of a light beam travelling from the lidar system to the target region and then back to the lidar system. Each group of storage elements can be arranged in a binary tree of a decimal tree configuration.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Inventors: Libo Meng, Qingdong Meng, Wei Wang
  • Patent number: 9768793
    Abstract: For continuous-time multi-stage noise shaping analog-to-digital converters (CT MASH ADCs), quantization noise cancellation often requires accurate estimation of transfer functions, e.g., a noise transfer function of the front end modulator and a signal transfer function of the back end modulator. To provide quantization noise cancellation, digital quantization noise cancellation filters adaptively tracks transfer function variations due to integrator gain errors, flash-to-DAC timing errors, as well as the inter-stage gain and timing errors. Tracking the transfer functions is performed through the direct cross-correlation between the injected maximum length linear feedback shift registers (LFSR) sequence and modulator outputs and then corrects these non-ideal effects by accurately modeling the transfer functions with programmable finite impulse response (PFIR) filters.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: September 19, 2017
    Assignee: ANALOG DEVICES GLOBAL
    Inventors: Qingdong Meng, Hajime Shibata, Richard E. Schreier, Martin Steven McCormick, Yunzhi Dong, Jose Barreiro Silva, Jialin Zhao, Donald W. Paterson, Wenhua W. Yang
  • Patent number: 9735797
    Abstract: For analog-to-digital converters (ADCs) which utilize a feedback digital-to-analog converter (DAC) for conversion, the final analog output can be affected or distorted by errors of the feedback DAC. A digital measurement technique can be implemented to determine timing mismatch error for the feedback DAC in a continuous-time delta-sigma modulator (CTDSM) or in a continuous-time pipeline modulator. The methodology utilizes cross-correlation of each DAC unit elements (UEs) output to the entire modulator output to measure its timing mismatch error respectively. Specifically, the timing mismatch error is estimated using a ratio based on a peak value and a value for the next tap in the cross-correlation function. The obtained errors can be stored in a look-up table and fully corrected in digital domain or analog domain.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 15, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventors: Jialin Zhao, Qingdong Meng, Yunzhi Dong, Jose Barreiro Silva
  • Publication number: 20170179969
    Abstract: For continuous-time multi-stage noise shaping analog-to-digital converters (CT MASH ADCs), quantization noise cancellation often requires accurate estimation of transfer functions, e.g., a noise transfer function of the front end modulator and a signal transfer function of the back end modulator. To provide quantization noise cancellation, digital quantization noise cancellation filters adaptively tracks transfer function variations due to integrator gain errors, flash-to-DAC timing errors, as well as the inter-stage gain and timing errors. Tracking the transfer functions is performed through the direct cross-correlation between the injected maximum length linear feedback shift registers (LFSR) sequence and modulator outputs and then corrects these non-ideal effects by accurately modeling the transfer functions with programmable finite impulse response (PFIR) filters.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 22, 2017
    Applicant: ANALOG DEVICES GLOBAL
    Inventors: Qingdong Meng, Hajime Shibata, Richard E. Schreier, Martin Steven McCormick, Yunzhi Dong, Jose Barreiro Silva, Jialin Zhao, Donald W. Paterson, Wenhua W. Yang
  • Publication number: 20170170839
    Abstract: For analog-to-digital converters (ADCs) which utilize a feedback digital-to-analog converter (DAC) for conversion, the final analog output can be affected or distorted by errors of the feedback DAC. A digital measurement technique can be implemented to determine timing mismatch error for the feedback DAC in a continuous-time delta-sigma modulator (CTDSM) or in a continuous-time pipeline modulator. The methodology utilizes cross-correlation of each DAC unit elements (UEs) output to the entire modulator output to measure its timing mismatch error respectively. Specifically, the timing mismatch error is estimated using a ratio based on a peak value and a value for the next tap in the cross-correlation function. The obtained errors can be stored in a look-up table and fully corrected in digital domain or analog domain.
    Type: Application
    Filed: November 23, 2016
    Publication date: June 15, 2017
    Applicant: ANALOG DEVICES, INC.
    Inventors: Jialin Zhao, Qingdong Meng, Yunzhi Dong, Jose Barreiro Silva
  • Patent number: 9595982
    Abstract: An approach to linearization relaxes the requirements on the digitization of the analog output signal while maintaining the benefits of a high sampling rate of the output signal. The digitization approach extracts sufficient information to characterize the output signal over a wide bandwidth without necessarily determining sufficient information to fully represent the output signal, for example, without sampling the output signal at the Nyquist sampling rate with a sufficient precision to accurately represent the signal.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 14, 2017
    Assignee: ANALOG DEVICES, INC.
    Inventors: Theophane Weber, Martin Steven McCormick, Qingdong Meng
  • Publication number: 20160094253
    Abstract: An approach to linearization relaxes the requirements on the digitization of the analog output signal while maintaining the benefits of a high sampling rate of the output signal. The digitization approach extracts sufficient information to characterize the output signal over a wide bandwidth without necessarily determining sufficient information to fully represent the output signal, for example, without sampling the output signal at the Nyquist sampling rate with a sufficient precision to accurately represent the signal.
    Type: Application
    Filed: May 20, 2014
    Publication date: March 31, 2016
    Applicant: ANALOG DEVICES, INC.
    Inventors: THEOPHANE WEBER, MARTIN STEVEN McCORMICK, QINGDONG MENG