Patents by Inventor Qinghao Meng

Qinghao Meng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11312809
    Abstract: Recovery times and/or airflow of flexible polyurethane foam is increased by including certain tackifiers in the foam formulation. The tackifiers are characterized in being incompatible with polyol or polyol mixture used to make the foam, having a viscosity of at least 5,000 centipoise at 25 #C and having a glass transition temperature of at most 20 #C. The tackifier is pre-blended with certain monols to form a lower-viscosity blend that is combined with one or more other polyols and a polyisocyanate to form a reaction mixture for producing a polyurethane foam.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: April 26, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Qinghao Meng, Meagan Broadway, Kaoru Aou, William J. Harris, Felipe A. Donate, Daniel L. Dermody, Christopher Thiede, Van M. Delk, Jr., Helge Braun, Yin Tang, Adam L. Grzesiak
  • Publication number: 20210371577
    Abstract: Embodiments of the present disclosure are directed towards formulated polyol compositions that include a first polyether polyol having an average hydroxyl number from 112 to 280 mg KOH/g, a second polyether polyol having an average hydroxyl number from 18.5 to 51 mg KOH/g, a third polyether polyol having an average hydroxyl number from 20 to 70 mg KOH/g, and at least one of: fourth polyether polyol having an average hydroxyl number from 112 to 280 mg KOH/g; and a methoxypolyethylene glycol having an average hydroxyl number from 56 to 190 mg KOH/g.
    Type: Application
    Filed: October 7, 2019
    Publication date: December 2, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Qinghao Meng, Lucie Porcelli, David J. Honkomp, Meagan Broadway, Morgan A. Springs, Paul Cookson, William L. Ritter, Anja Arlt
  • Publication number: 20210301069
    Abstract: Flexible polyurethane foams having high airflows and excellent viscoelastic properties are made using a polyol mixture that includes a certain liquid polyester, certain ethylene oxide polyols and certain propylene oxide polyols, and a polymeric MDI. When used in applications such as bedding, the high airflows contribute to an improved sense of comfort by the user.
    Type: Application
    Filed: August 5, 2019
    Publication date: September 30, 2021
    Inventors: Qinghao Meng, Meagan Broadway, Christopher Thiede, Morgan A. Springs, Van M. Delk
  • Publication number: 20210206937
    Abstract: A coated viscoelastic polyurethane foam includes a viscoelastic polyurethane foam having the coating thereon, the viscoelastic polyurethane foam having a resiliency of less than or equal to 20% as measured according to ASTM D3574, and a coating material on and embedded within the viscoelastic polyurethane foam, the coating material including an aqueous polymer emulsion and an encapsulated phase change material.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 8, 2021
    Inventors: Kaoru Aou, Yibei Gu, Rajat Duggal, Yasmin N. Srivastava, Joseph Jacobs, Qinghao Meng, Gregoire Cardoen, Ralph C. Even, Morgan A. Springs
  • Publication number: 20210061941
    Abstract: Recovery times and/or airflow of flexible polyurethane foam is increased by including certain tackifiers in the foam formulation. The tackifiers are characterized in being incompatible with polyol or polyol mixture used to make the foam, having a viscosity of at least 5,000 centipoise at 25#C and having a glass transition temperature of at most 20#C. The tackifier is pre-blended with certain monols to form a lower-viscosity blend that is combined with one or more other polyols and a polyisocyanate to form a reaction mixture for producing a polyurethane foam.
    Type: Application
    Filed: March 8, 2019
    Publication date: March 4, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Qinghao MENG, Meagan BROADWAY, Kaoru AOU, William J. HARRIS, Felipe A. DONATE, Daniel L. DERMODY, Christopher P. DONATE, Van M. DELK, JR., Helge BRAUN
  • Publication number: 20210009747
    Abstract: Recovery times and/or airflow of flexible polyurethane foam is increased by including certain tackifiers in the foam formulation. The tackifiers are formed into an emulsion that includes a polyether containing oxyethylene groups, a nonionic surfactant and certain fumed silica, carbon black or talc particles.
    Type: Application
    Filed: March 8, 2019
    Publication date: January 14, 2021
    Inventors: Kaoru Aou, Qinghao Meng, Daniel L. Dermody, Hari Katepalli, William J. Harris, An N. Kaga, Kathleen Barnes, Li Pi Shan
  • Publication number: 20210002411
    Abstract: Recovery time and/or airflow of flexible polyurethane foam is increased by including certain tackifiers in the foam formulation. The tackifiers are characterized in being incompatible with polyol or polyol mixture used to make the foam, having a viscosity of at least 10,000 centipoise at 25° C., having a glass transition temperature of at most 15° C. and being inert to other components of the foam formulation.
    Type: Application
    Filed: March 8, 2019
    Publication date: January 7, 2021
    Inventors: Qinghao Meng, Christopher Thiede, Kaoru Aou, Van Delk, Jillian Charon, Doug Todd, Scott Snyder
  • Publication number: 20200399508
    Abstract: Recovery times of flexible polyurethane foams are increased by treatment with a pressure sensitive adhesive. An emulsion or dispersion of the adhesive in an aqueous carrier liquid is impregnated into the foam, with subsequent removal of the carrier. This invention is of special interest when the glass transition temperature of the starting foam is 16° C. or lower.
    Type: Application
    Filed: March 8, 2019
    Publication date: December 24, 2020
    Inventors: Kaoru Aou, William A. Koonce, Qinghao Meng, Christopher Thiede, William Griffith, Jr.
  • Patent number: 10626214
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 21, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kaoru Aou, Joseph Jacobs, Qinghao Meng, Paul Cookson
  • Patent number: 10480800
    Abstract: An air conditioner (100), comprising a compressor (110), a reversing assembly (120), an outdoor heat exchanger (130), an indoor heat exchanger (140), an electric control heat sink assembly (150), a unidirectional throttle valve (160) and a throttle component (170). The unidirectional throttle valve (160) comprises a first valve port (161) and a second valve port (162), on the flow direction from the first valve port (161) to the second valve port (162), the unidirectional throttle valve (170) is fully turned on, and on the flow direction from the second valve port (162) to the first valve port (161), the unidirectional throttle valve (170) is a throttle valve.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: November 19, 2019
    Assignee: GD MIDEA AIR-CONDITIONING EQUIPMENT CO., LTD.
    Inventors: Yu Han, Jinbo Li, Qinghao Meng, Mingyu Chen, Xiangbing Zeng
  • Publication number: 20190248951
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Kaoru Aou, Joseph Jacobs, Qinghao Meng, Paul Cookson
  • Publication number: 20190211171
    Abstract: A coated viscoelastic polyurethane foam includes a viscoelastic polyurethane foam having the coating thereon, the viscoelastic polyurethane foam having a resiliency of less than or equal to 20% as measured according to ASTM D3574, and a coating material on and embedded within the viscoelastic polyurethane foam, the coating material including an aqueous polymer emulsion and an encapsulated phase change material.
    Type: Application
    Filed: June 1, 2017
    Publication date: July 11, 2019
    Inventors: Kaoru Aou, Yibei Gu, Rajat Duggal, Yasmin N. Srivastava, Joseph Jacobs, Qinghao Meng, Gregoire Cardoen, Ralph C. Even, Morgan A. Springs
  • Publication number: 20190119431
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component and an isocyanate-reactive component that includes at least a polyol component, an additive component, and a preformed aqueous polymer dispersant. The mixture includes 50.0 wt % to 99.8 wt % of the polyol component, 0.1 wt % to 49.9 wt % of the additive component, and 0.1 wt % to 6.0 wt % of the preformed aqueous polymer dispersant. The aqueous polymer dispersant has a pH from 6.0 to 12.0 and includes from 5 wt % to 60 wt % of a polymeric component and from 40 wt % to 95 wt % of a fluid medium. The polymeric component includes at least one base polymer derived from 20 wt % to 100 wt % of at least one hydrophilic acid monomer having at least one carbonyl group, phosphate group, phosphonate group, or sulfonyl group, and optionally derived from at least one hydrophobic terminally unsaturated hydrocarbon monomer.
    Type: Application
    Filed: June 9, 2016
    Publication date: April 25, 2019
    Inventors: Kaoru Aou, Thomas H. Kalantar, Qinghao Meng, John Klier, Antony K. Van Dyk, Gary W. Dombrowski, Joseph Jacobs
  • Patent number: 10018367
    Abstract: An air conditioner (100), comprising a compressor (110), a reversing assembly (120), an outdoor heat exchanger (130), an indoor heat exchanger (140), an electric control heat sink assembly (150), a first unidirectional throttle valve (160) and a second unidirectional throttle valve (160?). The electric control heat sink assembly (150) comprises an electric control component (151) and a heat dissipation assembly (152). The first unidirectional throttle valve (160), on the flow direction from a first valve port (161) to a second valve port (162), is completely turned on. On the flow direction from the second valve port (162) to the first valve port (161), the first unidirectional throttle valve (160) is a throttle component. The second unidirectional throttle valve (160?), on the flow direction from a third valve port (161?) to a fourth valve port (162?), is completely turned on.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: July 10, 2018
    Assignee: GD Midea Air-Conditioning Equipment Co., Ltd.
    Inventors: Yu Han, Jinbo Li, Qinghao Meng, Mingyu Chen, Xiangbing Zeng
  • Publication number: 20170362375
    Abstract: A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 21, 2017
    Applicants: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kaoru Aou, Joseph Jacobs, Qinghao Meng, Paul Cookson
  • Publication number: 20170241652
    Abstract: An air conditioner (100), comprising a compressor (110), a reversing assembly (120), an outdoor heat exchanger (130), an indoor heat exchanger (140), an electric control heat sink assembly (150), a first unidirectional throttle valve (160) and a second unidirectional throttle valve (160?). The electric control heat sink assembly (150) comprises an electric control component (151) and a heat dissipation assembly (152). The first unidirectional throttle valve (160), on the flow direction from a first valve port (161) to a second valve port (162), is completely turned on. On the flow direction from the second valve port (162) to the first valve port (161), the first unidirectional throttle valve (160) is a throttle component. The second unidirectional throttle valve (160?), on the flow direction from a third valve port (161?) to a fourth valve port (162?), is completely turned on.
    Type: Application
    Filed: April 20, 2015
    Publication date: August 24, 2017
    Inventors: Yu HAN, Jinbo LI, Qinghao MENG, Mingyu CHEN, Xiangbing ZENG
  • Publication number: 20170234553
    Abstract: An air conditioner (100), comprising a compressor (110), a reversing assembly (120), an outdoor heat exchanger (130), an indoor heat exchanger (140), an electric control heat sink assembly (150), a unidirectional throttle valve (160) and a throttle component (170). The unidirectional throttle valve (160) comprises a first valve port (161) and a second valve port (162), on the flow direction from the first valve port (161) to the second valve port (162), the unidirectional throttle valve (170) is fully turned on, and on the flow direction from the second valve port (162) to the first valve port (161), the unidirectional throttle valve (170) is a throttle valve.
    Type: Application
    Filed: April 20, 2015
    Publication date: August 17, 2017
    Inventors: Yu HAN, Jinbo LI, Qinghao MENG, Mingyu CHEN, Xiangbing ZENG
  • Patent number: 9222203
    Abstract: A method for making items of clothing having shape memory, the method comprising: synthesizing (31) a shape memory polyurethane; subjecting (34) the shape memory polyurethane to wet spinning, dry spinning, melt spinning or multi-component spinning in order to produce shape memory fibers; and knitting or weaving (36) the shape memory fibers to form the item of clothing.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: December 29, 2015
    Assignee: The Hong Kong Polytechnic University
    Inventors: Jinlian Hu, Jianping Han, Jing Lu, Qinghao Meng, Yong Zhu, Yan Liu, Qunmin Ling, Fenglong Ji
  • Publication number: 20120000251
    Abstract: A method for making items of clothing having shape memory, the method comprising: synthesizing (31) a shape memory polyurethane; subjecting (34) the shape memory polyurethane to wet spinning, dry spinning, melt spinning or multi-component spinning in order to produce shape memory fibers; and knitting or weaving (36) the shape memory fibers to form the item of clothing.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: The Hong Kong Polytechnic University
    Inventors: Jinlian HU, Jianping Han, Jing Lu, Qinghao Meng, Yong Zhu, Yan Liu, Qunmin Ling, Fenglong Ji
  • Patent number: 7976944
    Abstract: A temperature-regulating fiber may include a spun phase change polymeric material that may include a plurality of phase change polymer blocks. The fiber may have a fixity ratio of at least 80% and a recovery ratio of at least 74%.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: July 12, 2011
    Assignee: The Hong Kong Polytechnic University
    Inventors: Jinlian Hu, Qinghao Meng