Patents by Inventor Qinghui Shao

Qinghui Shao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240204128
    Abstract: Devices, methods and techniques related to high voltage and high-power diamond transistors are disclosed. In one example aspect, a switch operable under high-voltage and high-power includes a P-type diamond layer doped with an acceptor material and an N-type diamond region doped with a donor material. The P-type diamond layer is at least partially embedded the N-type diamond region. The switch includes a layer comprising one or more apertures configured to allow illumination from a light source to pass through to reach the N-type diamond region, a source contact and a drain contact that are at least partially in contact with the P-type diamond layer; and a gate in contact with at least an area of the N-type diamond region.
    Type: Application
    Filed: January 31, 2024
    Publication date: June 20, 2024
    Inventors: Qinghui Shao, Lars F. Voss, Soroush Ghandiparsi
  • Patent number: 12015036
    Abstract: Devices, systems and methods for solid-state X-ray detection with high temporal resolution are described. An example method includes receiving an X-ray pulse in a semiconductor chip resulting in an electron cloud being formed in the semiconductor chip, applying a first set of voltages across a first plurality of drift cathode strips on a first side of the semiconductor chip and a second plurality of drift cathode strips on a second side of the semiconductor chip, applying a second set of voltages to across the first and the second plurality of drift cathode strips to form an electric field having a linear profile to cause the electron cloud to drift along the middle of the semiconductor chip, and activating a counter cathode on the second side and one or more readout anodes on the first side to collect the electron cloud after spreading in the middle section of the semiconductor chip.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: June 18, 2024
    Assignees: Lawrence Livermore National Security, LLC, The Regents of the University of California
    Inventors: David Lawrence Hall, Mihail Bora, Adam Conway, Philip Datte, Qinghui Shao, Erik Lars Swanberg, Jr., Clement Antoine Trosseille, Charles Edward Hunt
  • Publication number: 20240120428
    Abstract: Devices, methods and techniques related to high voltage and high-power diamond transistors are disclosed. In one example aspect, a switch operable under high-voltage and high-power includes a P-type diamond layer doped with an acceptor material, a first N-type diamond layer doped with a donor material and in contact with one side of the P-type diamond layer, a light blocking layer comprising the one or more apertures configured to allow the light to enter the first N-type diamond layer, a source contact and a drain contact that are at least partially in contact with the P-type diamond layer, and the gate in contact with at least an area of the first N-type diamond layer that corresponds to one of the one or more apertures. The gate can be positioned on the backside of the substrate.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 11, 2024
    Inventors: Qinghui Shao, Lars F. Voss
  • Publication number: 20240047516
    Abstract: An apparatus, in accordance with one embodiment, includes a superjunction device having a voltage sustaining layer formed of a semiconductor material and a dopant in the voltage sustaining layer. The dopant is for distributing an electric field within the voltage sustaining layer. The dopant is more concentrated along a sidewall of the voltage sustaining layer than toward a center of the voltage sustaining layer, the sidewall extending at least a portion of the distance between a top surface and a bottom surface of a voltage sustaining layer. Methods of electric field-enhanced dopant diffusion to form a superjunction device are also presented.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 8, 2024
    Inventors: Vincenzo Lordi, Noah Patrick Allen, Qinghui Shao, Clint Duncan Frye, Kyoung Eun Kweon, Lars F. Voss, Joel Basile Varley
  • Patent number: 11742424
    Abstract: In one embodiment, an apparatus includes at least one vertical transistor, where the at least one vertical transistor includes: a substrate comprising a semiconductor material, an array of three dimensional (3D) structures above the substrate, a gate region, and an isolation region positioned between the 3D structures. Each 3D structure includes the semiconductor material. Each 3D structure also includes a first region having a first conductivity type and a second region having a second conductivity type, the second region including a portion of at least one vertical sidewall of the 3D structure. The gate region is present on a portion of an upper surface of the second region and the gate region is coupled to a portion of the at least one vertical sidewall of each 3D structure.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: August 29, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Adam Conway, Sara Elizabeth Harrison, Rebecca Nikolic, Qinghui Shao, Lars Voss
  • Patent number: 11721771
    Abstract: According to one embodiment, a device includes a first electrode, a second electrode spaced from the first electrode, a well extending between the first electrode and the second electrode, one or more chalcogens in the well, and at least one halogen mixed with the one or more chalcogens in the well. In addition, the chalcogens are selected from the group consisting of sulfur, selenium, tellurium, and polonium.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: August 8, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Lars Voss, Clint Frye, Roger A. Henderson, John Winter Murphy, Rebecca J. Nikolic, Dongxia Qu, Qinghui Shao, Mark A. Stoyer
  • Publication number: 20210335866
    Abstract: Devices, systems and methods for solid-state X-ray detection with high temporal resolution are described. An example method includes receiving an X-ray pulse in a semiconductor chip resulting in an electron cloud being formed in the semiconductor chip, applying a first set of voltages across a first plurality of drift cathode strips on a first side of the semiconductor chip and a second plurality of drift cathode strips on a second side of the semiconductor chip, applying a second set of voltages to across the first and the second plurality of drift cathode strips to form an electric field having a linear profile to cause the electron cloud to drift along the middle of the semiconductor chip, and activating a counter cathode on the second side and one or more readout anodes on the first side to collect the electron cloud after spreading in the middle section of the semiconductor chip.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 28, 2021
    Inventors: David Lawrence Hall, Mihail Bora, Adam Conway, Philip Datte, Qinghui Shao, Erik Lars Swanberg, JR., Clement Antoine Trosseille, Charles Edward Hunt
  • Publication number: 20210328057
    Abstract: An apparatus includes at least one vertical transistor, where the at least one vertical transistor includes: a substrate including a first semiconductor material, an array of three dimensional (3D) structures above the substrate, a sidewall heterojunction layer positioned on at least one vertical sidewall of each 3D structure, and an isolation region positioned between the 3D structures. Each 3D structure includes the first semiconductor material. The sidewall heterojunction layer includes a second semiconductor material, where the first and second semiconductor material have different bandgaps.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 21, 2021
    Inventors: Adam Conway, Sara Elizabeth Harrison, Rebecca Nikolic, Qinghui Shao, Lars Voss
  • Patent number: 11133190
    Abstract: According to one embodiment, a method includes performing a plasma etching process on a masked III-V semiconductor, and forming a passivation layer on etched portions of the III-V semiconductor. The passivation layer includes at least one of a group III element and/or a metal from the following: Ni, Cr, W, Mo, Pt, Pd, Mg, Ti, Zr, Hf, Y, Ta, and Sc.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: September 28, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Sara E. Harrison, Clint Frye, Rebecca J. Nikolic, Qinghui Shao, Lars F. Voss
  • Patent number: 11024734
    Abstract: In one embodiment, a method of forming a vertical transistor includes forming a layer comprising a semiconductor material above a substrate, defining three dimensional (3D) structures in the layer, forming a second region in at least one vertical sidewall of each 3D structure, and forming an isolation region between the 3D structures. In another embodiment, an apparatus includes at least one vertical transistor, where the at least one vertical transistor includes: a substrate comprising a semiconductor material, an array of 3D structures above the substrate, and an isolation region positioned between the 3D structures. Each 3D structure includes the semiconductor material. Each 3D structure also includes a first region having a first conductivity type and a second region having a second conductivity type, the second region including a portion of at least one vertical sidewall of the 3D structure.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: June 1, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Adam Conway, Sara Elizabeth Harrison, Rebecca J. Nikolic, Qinghui Shao, Lars Voss
  • Publication number: 20210159337
    Abstract: In one embodiment, an apparatus includes at least one vertical transistor, where the at least one vertical transistor includes: a substrate comprising a semiconductor material, an array of three dimensional (3D) structures above the substrate, a gate region, and an isolation region positioned between the 3D structures. Each 3D structure includes the semiconductor material. Each 3D structure also includes a first region having a first conductivity type and a second region having a second conductivity type, the second region including a portion of at least one vertical sidewall of the 3D structure. The gate region is present on a portion of an upper surface of the second region and the gate region is coupled to a portion of the at least one vertical sidewall of each 3D structure.
    Type: Application
    Filed: January 7, 2021
    Publication date: May 27, 2021
    Inventors: Adam Conway, Sara Elizabeth Harrison, Rebecca Nikolic, Qinghui Shao, Lars Voss
  • Patent number: 11018253
    Abstract: According to one embodiment, an apparatus includes at least one vertical transistor, where the at least one vertical transistor includes: a substrate including a semiconductor material; an array of three dimensional (3D) structures above the substrate; and an isolation region positioned between the 3D structures. Each 3D structure includes the semiconductor material. Each 3D structure also includes a first region having a first conductivity type and a second region having a second conductivity type, where the second region includes a portion of at least one vertical sidewall of the 3D structure.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: May 25, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Adam Conway, Sara Elizabeth Harrison, Rebecca Nikolic, Qinghui Shao, Lars Voss
  • Patent number: 10930506
    Abstract: In one embodiment, a product includes a structure comprising a material of a Group-III-nitride having a dopant, where a concentration of the dopant in the structure has a concentration gradient characteristic of diffusion of the dopant inward from at least a portion of a surface of the structure in a direction substantially normal to the portion of the surface. The structure has less than 1% decomposition of the Group-III-nitride at the surface of the structure.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: February 23, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Lars Voss, Daniel Max Dryden, Clint Frye, Sara Elizabeth Harrison, Rebecca J. Nikolic, Qinghui Shao
  • Patent number: 10903371
    Abstract: According to one embodiment, an apparatus includes a substrate, and at least one three dimensional (3D) structure above the substrate. The substrate and the 3D structure each include a semiconductor material. The 3D structure also includes: a first region having a first conductivity type, and a second region coupled to a portion of at least one vertical sidewall of the 3D structure.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: January 26, 2021
    Assignees: Lawrence Livermore National Security, LLC, The Regents of the University of California
    Inventors: Adam Conway, Sara Elizabeth Harrison, Rebecca J. Nikolic, Qinghui Shao, Lars Voss, Srabanti Chowdhury
  • Patent number: 10699820
    Abstract: According to one embodiment, a product includes an array of three dimensional structures, where each of the three dimensional structure includes a semiconductor material; a cavity region between each of the three dimensional structures; and a first material in contact with at least one surface of each of the three dimensional structures, where the first material is configured to provide high energy particle and/or ray emissions.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 30, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Rebecca J. Nikolic, Adam P. Conway, Roger A. Henderson, Victor P. Karpenko, Qinghui Shao, Dawn A. Shaughnessy, Mark A. Stoyer, Lars F. Voss
  • Patent number: 10685758
    Abstract: According to one embodiment, a product includes an array of three dimensional structures, a cavity region between each of the three dimensional structures, and a first material in contact with at least one surface of each of the three dimensional structures. In addition, each of the three dimensional structures includes a semiconductor material, where at least one dimension of each of the three dimensional structures is in a range of about 0.5 microns to about 10 microns. Moreover, the first material is configured to provide high energy particle and/or ray emissions.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: June 16, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Clint Frye, Roger A. Henderson, John Winter Murphy, Rebecca J. Nikolic, Dongxia Qu, Qinghui Shao, Mark A. Stoyer, Lars Voss
  • Publication number: 20190393038
    Abstract: In one embodiment, a product includes a structure comprising a material of a Group-III-nitride having a dopant, where a concentration of the dopant in the structure has a concentration gradient characteristic of diffusion of the dopant inward from at least a portion of a surface of the structure in a direction substantially normal to the portion of the surface. The structure has less than 1% decomposition of the Group-III-nitride at the surface of the structure.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Inventors: Lars Voss, Daniel Max Dryden, Clint Frye, Sara Elizabeth Harrison, Rebecca J. Nikolic, Qinghui Shao
  • Publication number: 20180323074
    Abstract: According to one embodiment, a method includes performing a plasma etching process on a masked III-V semiconductor, and forming a passivation layer on etched portions of the III-V semiconductor. The passivation layer includes at least one of a group III element and/or a metal from the following: Ni, Cr, W, Mo, Pt, Pd, Mg, Ti, Zr, Hf, Y, Ta, and Sc.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 8, 2018
    Inventors: Sara Elizabeth Harrison, Clint Frye, Rebecca J. Nikolic, Qinghui Shao, Lars Voss
  • Publication number: 20180145187
    Abstract: According to one embodiment, a device includes a first electrode, a second electrode spaced from the first electrode, a well extending between the first electrode and the second electrode, one or more chalcogens in the well, and at least one halogen mixed with the one or more chalcogens in the well. In addition, the chalcogens are selected from the group consisting of sulfur, selenium, tellurium, and polonium.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 24, 2018
    Inventors: Lars Voss, Clint Frye, Roger A. Henderson, John Winter Murphy, Rebecca J. Nikolic, Dongxia Qu, Qinghui Shao, Mark A. Stoyer
  • Publication number: 20170222047
    Abstract: In one embodiment, a method of forming a vertical transistor includes forming a layer comprising a semiconductor material above a substrate, defining three dimensional (3D) structures in the layer, forming a second region in at least one vertical sidewall of each 3D structure, and forming an isolation region between the 3D structures. In another embodiment, an apparatus includes at least one vertical transistor, where the at least one vertical transistor includes: a substrate comprising a semiconductor material, an array of 3D structures above the substrate, and an isolation region positioned between the 3D structures. Each 3D structure includes the semiconductor material. Each 3D structure also includes a first region having a first conductivity type and a second region having a second conductivity type, the second region including a portion of at least one vertical sidewall of the 3D structure.
    Type: Application
    Filed: January 4, 2017
    Publication date: August 3, 2017
    Inventors: Adam Conway, Sara Elizabeth Harrison, Rebecca J. Nikolic, Qinghui Shao, Lars Voss