Patents by Inventor Qingjun Zhang

Qingjun Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180182606
    Abstract: The present disclosure provides an ion mobility spectrometer, which comprises: a power supply circuit, configured to provide a power supply voltage; a corona discharge configured to generate ions to be subjected to measurement, through corona discharge; an ion migration circuit configured to control migration of the ions; a migration zone structure configured to realize, under control of the ion migration circuit, mobility spectrum measurement of the ions which pass through the migration zone structure; a redundant charge extraction electrode arranged between the corona discharge structure and the migration zone structure, so that the ions which are generated by the corona discharge structure can pass therethrough to reach the migration zone structure; and a redundant charge extraction circuit, wherein the redundant charge extraction electrode is connected to the ground through the redundant charge extraction circuit.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 28, 2018
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Yanchun Wang, Ziran Zhao, Xianghua Li, Qiufeng Ma, Ge Li, Biao Cao, Qi Mao, Xiang Zou
  • Publication number: 20180179658
    Abstract: the present invention provides a method for forming a sensitive film for neutron detection, wherein the sensitive film is formed by electrophoresis coating, the liquid used for electrophoresis coating includes neutron sensitive material, electrophoresis paint and deionized water, and the neutron sensitive material is 10B single substance, 10B compound or mixture containing 10B. The sensitive film for neutron detection has the high detection efficiency because of the high content of 10B. The sensitive film for neutron detection has the uniform and stable film thickness, and excellent consistency. The production efficiency and the cost of the sensitive film are improved.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 28, 2018
    Inventors: Yongqiang WANG, Qingjun ZHANG, Yuanjing LI, Ziran ZHAO, Jianping CHANG, Yanchun WANG, Lifeng SUN, Nan BAI, Xingliang ZHAI
  • Publication number: 20180178415
    Abstract: A mold and a method of manufacturing GOS ceramic scintillator by using the mold are provided. The mold comprises: a female outer sleeve having a cavity disposed inside; a plurality of female blocks disposed inside the cavity, the plurality of female blocks being put together to form a composite structure having a vertical through hole; and a male upper pressing head and a male lower pressing head, wherein each of the male upper pressing head and the male lower pressing head has a shape consistent with that of the vertical through hole. The disclosure may reduce defects of the related art in hot-pressing-sintering such as a mold has a short retirement period and a high material waste, significantly reduce the cost for production of the GOS ceramic scintillator, and significantly improve a process economy.
    Type: Application
    Filed: November 17, 2017
    Publication date: June 28, 2018
    Inventors: Yanchun WANG, Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Nan BAI
  • Publication number: 20180164194
    Abstract: It is disclosed a scrubbing and sampling device, a card reader apparatus and a gate apparatus. The scrubbing and sampling device includes: a scrubbing and sampling portion including a first wheel and a second wheel, which are respectively capable of rotating around respective rotating axes, and a scrubbing conveyor belt tensioned by the first wheel and the second wheel and driven by rotation of the first wheel and the second wheel, to move between them; and an desorbing portion configured to desorb properties of an sample that is conveyed into the desorbing portion. The scrubbing conveyor belt is configured to move through the desorbing portion such that the desorbing portion desorbs the sample on the scrubbing conveyor belt when the scrubbing conveyor belt enters the desorbing portion.
    Type: Application
    Filed: November 29, 2017
    Publication date: June 14, 2018
    Inventors: Qingjun ZHANG, Yuanjing LI, Ziran ZHAO, Ge LI, Qiufeng MA
  • Publication number: 20180164449
    Abstract: This disclosure provides a radiation detection apparatus and a method, a data processing method and a processor, which relates to the field of radiation detection technology. Wherein, the radiation detection apparatus of this disclosure comprises: a radiation detector which generates an electrical signal by interacting with X-rays; an Analog-to-Digital Converter (ADC) which is coupled to the radiation detector and transmits the electrical signal to a waveform data; and a data processor which receives the waveform data from the ADC, determines the number of single photon signals according to the waveform data, and determines whether an integral signal and/or a count signal of the waveform data will be used for imaging according to the number of the single photon signals.
    Type: Application
    Filed: September 29, 2017
    Publication date: June 14, 2018
    Inventors: Yuanjing Li, Ziran Zhao, Jianmin Li, Yulan Li, Weibin Zhu, Xiang Zou, Qingjun Zhang, Chunguang Zong, Xiaolin Zhao, Shuwei Li, Junxiao Wang
  • Publication number: 20180164262
    Abstract: The present disclosure provides a gas chromatography-ion mobility spectrometry apparatus, including a housing, an injection port mounted to and connected with the housing and configured for input of a gas containing a sample therein, a multicapillary column configured for separation of a gas substance and an ion mobility tub configured for analysis of the gas substance. The gas chromatography-ion mobility spectrometry apparatus further includes: a gas path part connected with the ion mobility tube and configured for providing the gas to the ion mobility tube and receiving a gas discharged from the ion mobility tube; and a buffer base part detachably mounted to the housing and configured to isolation vibration outside the buffer base part, the ion mobility tube being disposed on the buffer base part, wherein the gas path part is mounted in an interior space of the buffer base part.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 14, 2018
    Inventors: Qingjun ZHANG, Yuanjing LI, Ziran ZHAO, Weiping ZHU, Huishao HE, Qiufeng MA, Xiang ZOU, Biao CAO
  • Publication number: 20180158659
    Abstract: Embodiments of the present disclosure relate to a preparation and feed apparatus of a standard sample for calibration of a trace-analysis instrument, and especially to a preparation and feed apparatus of a standard sample for calibration of a gas chromatograph-ion mobility spectrometer. When the trace-analysis instrument is being calibrated by taking advantage of the preparation and feed apparatus according to embodiments of the disclosure, it is unnecessary to use an additional dedicated tool and steps to prepare the sample for testing and to use an organic solvent or a dedicated sample application/dispensing tool, resulting in that the trace-analysis instrument is simple and convenient to carry and use, and the substance for calibration is also convenient to store and exchange; moreover, the trace-analysis instrument is also safe, reliable and environmentally friendly.
    Type: Application
    Filed: October 17, 2017
    Publication date: June 7, 2018
    Inventors: Qingjun ZHANG, Yuanjing LI, Ziran ZHAO, Weiping ZHU, Nan BAI, Qiufeng MA
  • Publication number: 20180158785
    Abstract: The present disclosure proposes a packaging structure for a metallic bonding based opto-electronic device and a manufacturing method thereof. According to the embodiments, the packaging structure for an opto-electronic device may comprise an opto-electronic chip and a packaging base. The opto-electronic chip comprises: a substrate having a first substrate surface and a second substrate surface opposite to each other; an opto-electronic device formed on the substrate; and electrodes for the opto-electronic device which are formed on the first substrate surface. The packaging base has a first base surface and a second base surface opposite to each other, and comprises conductive channels extending from the first base surface to the second base surface.
    Type: Application
    Filed: September 28, 2017
    Publication date: June 7, 2018
    Inventors: Wenjian ZHANG, Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Ziran ZHAO, Yinong LIU, Yaohong LIU, Xiang ZOU, Huishao HE, Weishu LI, Nan BAI
  • Publication number: 20180156741
    Abstract: Inspection devices and inspection methods are disclosed. The inspection method includes: performing X-ray scanning on an object being inspected so as to generate an image of the object being inspected; dividing the image of the object being inspected to determine at least one region of interest; detecting interaction between a cosmic ray and the region of interest to obtain a detection value; calculating a scattering characteristic value and/or an absorption characteristic value of the cosmic ray in the region of interest based on size information of the region of interest and the detection value; and discriminating a material attribute of the region of interest by means of the scattering characteristic value and/or the absorption characteristic value. With the above technical solutions, inspection accuracy and inspection efficiency may be improved.
    Type: Application
    Filed: September 27, 2017
    Publication date: June 7, 2018
    Inventors: Kejun Kang, Jianping Cheng, Zhiqiang Chen, Ziran Zhao, Junli Li, Xuewu Wang, Zhi Zeng, Ming Zeng, Yi Wang, Qingjun Zhang, Jianping Gu, Xi Yi, Bicheng Liu, Guangming Xu, Yongqiang Wang
  • Patent number: 9983321
    Abstract: The invention discloses a safety inspection detector and a goods safety inspection system. The safety inspection detector at least comprises a circuit board, a first housing, a second housing, a detection module and a connecting interface. The detection module and the connecting interface are mounted on the circuit board. The first housing is pressed and connected to a first surface of the circuit board, and the second housing is pressed and connected to a second surface of the circuit board. The first housing and the second housing can hermetically wrap the detection module and electronic devices on the circuit board, but bypass the connecting interface to realize leading-out and connection with related interconnected cables by utilizing the connecting interface. The housings can be used for sealing and protecting sensitive electronic devices in the detector, thus being moisture proof and preventing interference.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 29, 2018
    Assignees: NUCTECH COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Xiang Zou, Huishao He, Shuwei Li, Jianping Chang, Wenjian Zhang
  • Publication number: 20180142404
    Abstract: Disclosed are a water purifying module self-cleaning method and a washing machine using the method. The water purifying module self-cleaning method comprises: starting a water purifying module self-cleaning program to feed water into a washing machine to reach a preset level; and repeating a heating rinsing program and a clear water replacement rinsing program in sequence until detecting that the water purifying module is clean, wherein the heating rinsing program comprises a washing water heating step, a membrane rinsing step, a standing step and a membrane air washing step. The water purifying module self-cleaning method can peel off impurities, macromolecular particles and the like from the surface of a filter system (5) of a water purifying module, thus ensuring the water purifying effect of the water purifying module and effectively prolonging the service life of the water purifying module.
    Type: Application
    Filed: April 15, 2016
    Publication date: May 24, 2018
    Applicant: QINGDAO HAIER DRUM WASHING MACHINE CO., LTD.
    Inventors: Zhilong ZHAO, Haitao HU, Huibin YANG, Xianfeng FAN, Haifeng REN, Qingjun ZHANG, Yunfeng HE
  • Patent number: 9915751
    Abstract: The present application discloses a detector module, which is arranged on a detector arm, comprising one or a plurality of detector units arranged in a scattered configuration, wherein each of the detector units in the detector module is installed aiming at a beam center of a ray source, thus improving imaging quality and reducing the size of a detector frame drastically.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: March 13, 2018
    Assignees: NUCTECH COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Kejun Kang, Jianmin Li, Yuanjing Li, Yulan Li, Jingyu Gu, Weizhen Wang, Quanwei Song, Qingjun Zhang, Shenjin Ming, Xuewu Wang, Hui Gong, Tao Xue
  • Patent number: 9869775
    Abstract: A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: January 16, 2018
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Yanchun Wang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Wenjian Zhang, Shuqing Zhao, Xiang Zou, Yongqiang Wang
  • Publication number: 20170329039
    Abstract: The present disclosure relates to a method, a device and a system for inspecting a moving object based on cosmic rays, pertaining to the field of radiation imaging and safety inspection techniques. The method includes: detecting whether a speed of the inspected moving object is within a preset range; recording a motion trajectory of the moving object with a monitoring device; acquiring information about charged particles in the cosmic rays with a position sensitive detector, the information about charged particles including track information of the charged particles; determining the moving object by matching positions of the motion trajectory and the track information; reconstructing the track of the charged particles according to the information about the charged particles; and recognizing the material inside the moving object based on the track reconstruction.
    Type: Application
    Filed: January 20, 2017
    Publication date: November 16, 2017
    Inventors: Kejun KANG, Jianping CHENG, Zhiqiang CHEN, Ziran ZHAO, Junli LI, Xuewu WANG, Zhi ZENG, Qingjun ZHANG, Jianping GU, Xi YI, Bicheng LIU, Guangming XU, Yongqiang WANG
  • Patent number: 9816028
    Abstract: The present disclosure is directed to a rapid process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics by using the combination of spark plasma primary sintering (SPS) and hot isostatic pressing secondary sintering.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: November 14, 2017
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Yanchun Wang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Shuqing Zhao, Wenjian Zhang, Yongqiang Wang
  • Patent number: 9772306
    Abstract: The present invention discloses a gas analyzing apparatus and a sampling device. The gas analyzing apparatus includes a sampling device and an ion mobility spectrum analysis device. The sampling device includes a multi-capillary column and a temperature control system. The ion mobility spectrum analysis device is adapted for analyzing a gas leaded-in by the sampling device and includes a reaction cavity for reaction between sample molecules and reaction ions, the cavity having a sampling opening for leading-in of the gas. An outlet end of the multi-capillary column is inserted directly into the cavity of the ion mobility spectrum analysis device through the sampling opening of the ion mobility spectrum analysis device.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: September 26, 2017
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Qiufeng Ma, Huishao He, Weiping Zhu, Xiang Zou, Jianping Chang, Song Liang
  • Patent number: 9771515
    Abstract: The present disclosure is directed to a low cost sintering process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics, comprising uniaxial hot pressing primary sintering and hot isostatic pressing secondary sintering.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: September 26, 2017
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Yanchun Wang, Qingjun Zhang, Yuanjing Li, Zhiqiang Chen, Ziran Zhao, Yinong Liu, Yaohong Liu, Jianping Chang, Shuqing Zhao, Wenjian Zhang, Yongqiang Wang
  • Publication number: 20170208528
    Abstract: There is provided an Advanced Metering Infrastructure (AMI) system including a plurality of gate-ways interconnected by a network comprising a plurality of subnets based on one or more types of networking protocols, each of the plurality of gateways communicatively coupled to or integrated in a metering device; and a concentrator connected to the network for receiving metering data from the metering devices. The concentrator and the plurality of gateways each defines a communication node in the network. In particular, each of the gateways is configured to store a route information comprising at least a primary route information and is operable to route uplink data received based on the route information, the primary route information indicating a predetermined one of the communication nodes for the gateway to route the uplink data to next as a first priority.
    Type: Application
    Filed: July 22, 2015
    Publication date: July 20, 2017
    Applicants: Agency for Science, Technology and Research, Power Automation Pte Ltd
    Inventors: Qingjun ZHANG, Ser Wah OH, Yuen Sam KWOK, Sen GOPA, Feng HONG, Pankaj SHARMA, Chong Yee LEE, Gim Kerk SEE
  • Publication number: 20170184515
    Abstract: The present application relates to a dual-energy detection method, system and apparatus. The apparatus includes: a first pixel detector array proximal to a ray source, configured to detect ray source photons having relatively low energy; and a second pixel detector array distal from the ray source, configured to detect ray source photons having relatively high energy; wherein the first pixel detector array includes a plurality of rows of first pixel detectors, the first pixel detector including a first sensitive medium, a first photosensitive device, a first incidence plane, and a first window; the second pixel detector array includes a single row of second pixel detectors, the second pixel detector including a second sensitive medium, a second photosensitive device, a second incidence plane, and a second window; and each of the second pixel detectors has the same pixel area as corresponding plurality of first pixel detectors thereof.
    Type: Application
    Filed: September 28, 2016
    Publication date: June 29, 2017
    Applicant: Nuctech Company Limited
    Inventors: Qingjun ZHANG, Yuanjing LI, Shuwei LI, Ziran ZHAO, Weibin ZHU, Junxiao WANG, Jianhua LI
  • Publication number: 20170176299
    Abstract: The present invention discloses a sample injection device for sample collection and sample thermal desorption.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 22, 2017
    Inventors: Qingjun ZHANG, Yuanjing LI, Zhiqiang CHEN, Weiping ZHU, Huishao HE, Qiufeng MA, Yaohong LIU, Xiang ZOU, Jianping CHANG