Patents by Inventor Qingmei JIANG
Qingmei JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11248085Abstract: The present invention provides an epoxy resin material, a preparation method therefor and an application thereof. The present method for preparing an epoxy resin material comprises: heating a mixture of an epoxy resin main agent and a curing agent that are placed at room temperature to 40-85° C. for reaction and curing. The curing agent contains an adduct of an olefinic nitrile compound and an amine compound. The present method for preparing an epoxy resin material has the characteristics of low mixing viscosity, long operation time, and low amount of heat released during preparation.Type: GrantFiled: September 28, 2017Date of Patent: February 15, 2022Inventors: Meng Zhou, Zhaoxing Liu, Xiucai Du, Xiaoli Sun, Changkun Chu, Congying Zhang, Xin Li, Qingmei Jiang
-
Patent number: 11045794Abstract: A supported catalyst used for synthesizing a polyether amine, and a manufacturing method of the catalyst. The catalyst comprises: a porous oxide as a support; Ni, Cu, Pd, and Rh as active components; and one or more of any of Zr, Cr, Mo, Fe, Zn, Sn, Bi, Ce, La, Hf, Sr, Sb, Mg, Be, Re, Ta, Ti, Sc, Ge and related metals as an auxiliary agent. The catalyst can be used in an amination reaction for a large molecular weight polyether polyol, and is particularly active and selective for an amination reaction of a low molecular weight polyether polyol. The catalyst has a simple and economic manufacturing technique and good potential for future applications.Type: GrantFiled: August 24, 2016Date of Patent: June 29, 2021Inventors: Shujie Ren, Congying Zhang, Xin Li, Zhenguo Liu, Xiaolong Wang, Lei Tang, Zhipeng Liu, Zhanyu Gao, Jian Wu, Cong Wang, Yuan Li, Qingmei Jiang, Jinhong Song, Weiqi Hua, Hao Ding
-
Patent number: 10974233Abstract: The present invention provides a method for preparing 1,5-pentanediol via hydrogenolysis of tetrahydrofurfuryl alcohol. The catalyst used in the method is prepared by supporting a noble metal and a promoter on an organic polymer supporter or an inorganic hybrid material supporter, wherein the supporter is functionalized by a nitrogen-containing ligand. When the catalyst is used in the hydrogenolysis of tetrahydrofurfuryl alcohol to prepare 1,5-pentanediol, a good reaction activity and a high selectivity can be achieved. The promoter and the nitrogen-containing ligand in the supporter are bound to the catalyst through coordination, thereby the loss of the promoter is significantly decreased, and the catalyst has a particularly high stability. The lifetime investigation of the catalyst, which has been reused many times or used continuously for a long term, suggests that the catalyst has no obvious change in performance, thus reducing the overall process production cost.Type: GrantFiled: March 27, 2017Date of Patent: April 13, 2021Assignee: WANHUA CHEMICAL GROUP CO., LTD.Inventors: Jianglin Hu, Yunhai Liu, Yuan Li, Qingmei Jiang, Yanfang Song, Yang Yang, Changsheng Chen, Ke Ding, Wei Zeng, Hengdong Yang, Kun Wang, Weiqi Hua
-
Publication number: 20210047459Abstract: The present invention provides an epoxy resin material, a preparation method therefor and an application thereof. The present method for preparing an epoxy resin material comprises: heating a mixture of an epoxy resin main agent and a curing agent that are placed at room temperature to 40-85° C. for reaction and curing. The curing agent contains an adduct of an olefinic nitrile compound and an amine compound. The present method for preparing an epoxy resin material has the characteristics of low mixing viscosity, long operation time, and low amount of heat released during preparation.Type: ApplicationFiled: September 28, 2017Publication date: February 18, 2021Applicant: Wanhua Chemical Group Co., Ltd.Inventors: Meng Zhou, Zhaoxing Liu, Xiucai Du, Xiaoli Sun, Changkun Chu, Congying Zhang, Xin Li, Qingmei Jiang
-
Patent number: 10898883Abstract: An organic-base functionalized silicalite-1 molecular sieve-encapsulated metal nanoparticles catalyst and a preparation method therefor, as well as a method for preparing 1,2-pentanediol from biomass-derived furfuryl alcohol by hydrogenolysis using said catalyst. When the catalyst is used in a reaction preparing 1,2-pentanediol from furfuryl alcohol by hydrogenolysis, the catalyst has high hydrogenolysis activity under relatively mild reaction conditions, significantly increasing the conversion rate of furfuryl alcohol and 1,2-pentanediol selectivity in the reaction, while also not generating obvious byproducts furfuryl alcohol polymers; the catalyst has good stability and long life, and may be recovered for reuse after the reaction is complete by means of a simple filtration, greatly reducing reaction costs and separation difficulty.Type: GrantFiled: August 2, 2017Date of Patent: January 26, 2021Assignee: Wanhua Chemical Group Co., Ltd.Inventors: Jianglin Hu, Yunhai Liu, Xinjian Bian, Yuan Li, Qingmei Jiang, Changsheng Chen, Yanfang Song, Yang Yang, Wei Zeng, Ke Ding, Hengdong Yang, Kun Wang, Weiqi Hua
-
Publication number: 20200139353Abstract: An organic-base functionalized silicalite-1 molecular sieve-encapsulated metal nanoparticles catalyst and a preparation method therefor, as well as a method for preparing 1,2-pentanediol from biomass-derived furfuryl alcohol by hydrogenolysis using said catalyst. When the catalyst is used in a reaction preparing 1,2-pentanediol from furfuryl alcohol by hydrogenolysis, the catalyst has high hydrogenolysis activity under relatively mild reaction conditions, significantly increasing the conversion rate of furfuryl alcohol and 1,2-pentanediol selectivity in the reaction, while also not generating obvious byproducts furfuryl alcohol polymers; the catalyst has good stability and long life, and may be recovered for reuse after the reaction is complete by means of a simple filtration, greatly reducing reaction costs and separation difficulty.Type: ApplicationFiled: August 2, 2017Publication date: May 7, 2020Inventors: Jianglin HU, Yunhai LIU, Xinjian BIAN, Yuan LI, Qingmei JIANG, Changsheng CHEN, Yanfang SONG, Yang YANG, Wei ZENG, Ke DING, Hengdong YANG, Kun WANG, Weiqi HUA
-
Publication number: 20200009544Abstract: The present invention provides a method for preparing 1,5-pentanediol via hydrogenolysis of tetrahydrofurfuryl alcohol. The catalyst used in the method is prepared by supporting a noble metal and a promoter on an organic polymer supporter or an inorganic hybrid material supporter, wherein the supporter is functionalized by a nitrogen-containing ligand. When the catalyst is used in the hydrogenolysis of tetrahydrofurfuryl alcohol to prepare 1,5-pentanediol, a good reaction activity and a high selectivity can be achieved. The promoter and the nitrogen-containing ligand in the supporter are bound to the catalyst through coordination, thereby the loss of the promoter is significantly decreased, and the catalyst has a particularly high stability. The lifetime investigation of the catalyst, which has been reused many times or used continuously for a long term, suggests that the catalyst has no obvious change in performance, thus reducing the overall process production cost.Type: ApplicationFiled: March 27, 2017Publication date: January 9, 2020Inventors: Jianglin HU, Yunhai LIU, Yuan LI, Qingmei JIANG, Yanfang SONG, Yang YANG, Changsheng CHEN, Ke DING, Wei ZENG, Hengdong YANG, Kun WANG, Weiqi HUA
-
Publication number: 20190201878Abstract: A supported catalyst used for synthesizing a polyether amine, and a manufacturing method of the catalyst. The catalyst comprises: a porous oxide as a support; Ni, Cu, Pd, and Rh as active components; and one or more of any of Zr, Cr, Mo, Fe, Zn, Sn, Bi, Ce, La, Hf, Sr, Sb, Mg, Be, Re, Ta, Ti, Sc, Ge and related metals as an auxiliary agent. The catalyst can be used in an amination reaction for a large molecular weight polyether polyol, and is particularly active and selective for an amination reaction of a low molecular weight polyether polyol. The catalyst has a simple and economic manufacturing technique and good potential for future applications.Type: ApplicationFiled: August 24, 2016Publication date: July 4, 2019Applicant: Wanhua Chemical Group Co., Ltd.Inventors: Shujie Ren, Congying Zhang, Xin Li, Zhenguo Liu, Xiaolong Wang, Lei Tang, Zhipeng Liu, Zhanyu Gao, Jian Wu, Cong Wang, Yuan Li, Qingmei Jiang, Jinhong Song, Weiqi Hua, Hao Ding
-
Patent number: 9926259Abstract: The present invention relates to a catalyst for fixed bed aniline rectification residue recycling and preparation method thereof. Based on the total weight of the catalyst, the catalyst comprises the following components in percentage by weight: 5-40% of an active component, 2-30% of a first cocatalyst component, 10-30% of a second cocatalyst component and the balance of carrier, wherein the active component is NiO; the first cocatalyst component is one or more of Fe, Mo, Cr or Co oxide; and the second cocatalyst component is one or more of La, Zr, Y or Ce oxide. The catalyst is prepared through co-precipitation. The catalyst shows high activity and stability in the waste liquid treatment process, and can still maintain high rectification residue cracking rate after reaction of 200 hours.Type: GrantFiled: September 29, 2017Date of Patent: March 27, 2018Assignee: Wanhua Chemical Group Co., Ltd.Inventors: Hua Mei, Hao Chen, Dewei Yu, Congying Zhang, Hui Wang, Yuan Li, Zhongying Chen, Zilin Ni, Qingmei Jiang, Shanjian Cao, Zaigang Yang, Jun Qu, Jinhong Song, Bingbo Hu
-
Publication number: 20180065916Abstract: The present invention relates to a catalyst for fixed bed aniline rectification residue recycling and preparation method thereof. Based on the total weight of the catalyst, the catalyst comprises the following components in percentage by weight: 5-40% of an active component, 2-30% of a first cocatalyst component, 10-30% of a second cocatalyst component and the balance of carrier, wherein the active component is NiO; the first cocatalyst component is one or more of Fe, Mo, Cr or Co oxide; and the second cocatalyst component is one or more of La, Zr, Y or Ce oxide. The catalyst is prepared through co-precipitation. The catalyst shows high activity and stability in the waste liquid treatment process, and can still maintain high rectification residue cracking rate after reaction of 200 hours.Type: ApplicationFiled: September 29, 2017Publication date: March 8, 2018Inventors: Hua Mei, Hao Chen, Dewei Yu, Congying Zhang, Hui Wang, Yuan Li, Zhongying Chen, Zilin Ni, Qingmei Jiang, Shanjian Cao, Zaigang Yang, Jun Qu, Jinhong Song, Bingbo Hu
-
Patent number: 9580380Abstract: Disclosed is a method for preparing diamino-dicyclohexyl methane (H12MDA) by hydrogenation of diamino-diphenyl methane (MDA). In the process, 4,4?-MDA used as the starting material is firstly hydrogenated to prepare 4,4?-H12MDA. When the activity of the catalyst is reduced, the feed is switched from 4,4?-MDA to the mixture of 2,4?-MDA and 4,4?-MDA, and then when the conversion is stabilized, the feed is switched to 4,4?-MDA again. The deactivated catalyst is activated on line by switching the feed to the mixture of 2,4?-MDA and 4,4?-MDA. 4,4?-H12MDA having the trans-trans isomer content of 16˜24 wt % is produced, and the mixture of 2,4?-H12MDA and 4,4?-H12MDA is also produced, wherein the content of 2,4?-H12MDA in the mixture is 4˜15 wt %.Type: GrantFiled: November 22, 2013Date of Patent: February 28, 2017Assignee: Wanhua Chemical Group Co., Ltd.Inventors: Xin Li, Hao Chen, Congying Zhang, Shan Gao, Zhenguo Liu, Weijia Wang, Lei Tang, Zhipeng Liu, Yuan Li, Qingmei Jiang, Jinhong Song, Weiqi Hua, Hao Ding
-
Publication number: 20160207876Abstract: The present invention relates to a catalyst for fixed bed aniline rectification residue recycling and preparation method thereof. Based on the total weight of the catalyst, the catalyst comprises the following components in percentage by weight: 5-40% of an active component, 2-30% of a first cocatalyst component, 10-30% of a second cocatalyst component and the balance of carrier, wherein the active component is NiO; the first cocatalyst component is one or more of Fe, Mo, Cr or Co oxide; and the second cocatalyst component is one or more of La, Zr, Y or Ce oxide. The catalyst is prepared through co-precipitation. The catalyst shows high activity and stability in the waste liquid treatment process, and can still maintain high rectification residue cracking rate after reaction of 200 hours.Type: ApplicationFiled: March 7, 2014Publication date: July 21, 2016Inventors: Hua Mei, Hao CHEN, Dewei YU, Congying ZHANG, Hui WANG, Yuan LI, Zhongying CHEN, Zilin NI, Qingmei JIANG, Shanjian CAO, Zaigang YANG, Jun QU, Jinhong SONG, Bingbo HU
-
Publication number: 20160068472Abstract: Disclosed is a method for preparing diamino-dicyclohexyl methane (H12MDA) by hydrogenation of diamino-diphenyl methane (MDA). In the process, 4,4?-MDA used as the starting material is firstly hydrogenated to prepare 4,4?-H12MDA. When the activity of the catalyst is reduced, the feed is switched from 4,4?-MDA to the mixture of 2,4?-MDA and 4,4?-MDA, and then when the conversion is stabilized, the feed is switched to 4,4?-MDA again. The deactivated catalyst is activated on line by switching the feed to the mixture of 2,4?-MDA and 4,4?-MDA. 4,4?-H12MDA having the trans-trans isomer content of 16˜24 wt % is produced, and the mixture of 2,4?-H12MDA and 4,4?-H12MDA is also produced, wherein the content of 2,4?-H12MDA in the mixture is 4˜15 wt %.Type: ApplicationFiled: November 22, 2013Publication date: March 10, 2016Applicants: WANHUA CHEMICAL (NINGBO) CO., LTD., WANHUA CHEMICAL GROUP CO., LTD.Inventors: Xin LI, Hao CHEN, Congying ZHANG, Shan GAO, Zhenguo LIU, Weijia WANG, Lei TANG, Zhipeng LIU, Yuan LI, Qingmei JIANG, Jinhong SONG, Weiqi HUA, Hao DING