Patents by Inventor Qingrong Jackie Wu

Qingrong Jackie Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11583698
    Abstract: According to an aspect, a method includes receiving data about a patient, computing geometric characterization of one or more organs at risk proximate to a target volume of a patient or vice versa, and selecting relevant treatment knowledge and experience. The method also includes generating, based on the received data, computed geometric characterization, and available knowledge and experience, a first set of radiation treatment planning parameters that will lead to a high quality plan for the patient. Further, the method includes model-based prediction, based on the data, a second set or more of radiation treatment planning parameters that will lead to alternative achievable plans with different organ sparing objectives for treating the patient. The multiple sets for parameters can be used separately or in conjunction to generate treatment plans.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: February 21, 2023
    Assignees: Wake Forest University Health Sciences, Duke University
    Inventors: Fang-Fang Yin, Qingrong Jackie Wu, Lulin Yuan, Yaorong Ge
  • Patent number: 11443842
    Abstract: Systems and methods for efficient and automatic determination of radiation beam configurations for patient-specific radiation therapy planning are disclosed. According to an aspect, a method includes receiving data based on patient information and geometric characterization of one or more organs at risk proximate to a target volume of a patient. The method includes determining automatically one or more radiation treatment beam configuration sets. Further, the method includes presenting the determined one or more radiation beam configuration sets via a user interface.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 13, 2022
    Assignees: Duke University, The University of North Carolina at Charlotte
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Lulin Yuan
  • Patent number: 11065471
    Abstract: Systems and methods for automatic, customized radiation treatment plan generation for cancer are disclosed. According to an aspect, a method includes receiving data indicating anatomy information of a patient and radiation beam characteristics of a radiation therapy system. Further, the method includes determining energy levels for application of radiation beams to the patient.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: July 20, 2021
    Assignees: Duke University, The University of North Carolina at Charlotte
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Taoran Li, Fang-Fang Yin, Yang Sheng
  • Publication number: 20200254275
    Abstract: Systems and methods for automatic, customized radiation treatment plan generation for cancer are disclosed. According to an aspect, a method includes receiving data indicating anatomy information of a patient and radiation beam characteristics of a radiation therapy system. Further, the method includes determining energy levels for application of radiation beams to the patient.
    Type: Application
    Filed: November 21, 2016
    Publication date: August 13, 2020
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Taoran Li, Fang-Fang Yin, Yang Sheng
  • Publication number: 20200121950
    Abstract: Systems and methods for efficient and automatic determination of radiation beam configurations for patient-specific radiation therapy planning are disclosed. According to an aspect, a method includes receiving data based on patient information and geometric characterization of one or more organs at risk proximate to a target volume of a patient. The method includes determining automatically one or more radiation treatment beam configuration sets. Further, the method includes presenting the determined one or more radiation beam configuration sets via a user interface.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Lulin Yuan
  • Publication number: 20200108276
    Abstract: Disclosed herein are systems and methods for specifying treatment criteria and treatment planning parameters for patient specific radiation therapy planning. According to an aspect, a method includes receiving data about a patient, computing geometric characterization of one or more organs at risk proximate to a target volume of a patient or vice versa, and selecting relevant treatment knowledge and experience. The method also includes generating, based on the received data, computed geometric characterization, and available knowledge and experience, a first set of radiation treatment planning parameters that will lead to a high quality plan for the patient. Further, the method includes model-based prediction, based on the data, a second set or more of radiation treatment planning parameters that will lead to alternative achievable plans with different organ sparing objectives for treating the patient. The multiple sets for parameters can be used separately or in conjunction to generate treatment plans.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 9, 2020
    Inventors: Fang-Fang Yin, Qingrong Jackie Wu, Lulin Yuan, Yaorong Ge
  • Patent number: 10549121
    Abstract: Systems and methods for efficient and automatic determination of radiation beam configurations for patient-specific radiation therapy planning are disclosed. According to an aspect, a method includes receiving data based on patient information and geometric characterization of one or more organs at risk proximate to a target volume of a patient. The method includes determining automatically one or more radiation treatment beam configuration sets. Further, the method includes presenting the determined one or more radiation beam configuration sets via a user interface.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 4, 2020
    Assignees: Duke University, The University of North Carolina at Charlotte
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Lulin Yuan
  • Patent number: 10449388
    Abstract: Disclosed herein are systems and methods for specifying treatment criteria and treatment planning parameters for patient specific radiation therapy planning. According to an aspect, a method includes receiving data about a patient, computing geometric characterization of one or more organs at risk proximate to a target volume of a patient or vice versa, and selecting relevant treatment knowledge and experience. The method also includes generating, based on the received data, computed geometric characterization, and available knowledge and experience, a first set of radiation treatment planning parameters that will lead to a high quality plan for the patient. Further, the method includes model-based prediction, based on the data, a second set or more of radiation treatment planning parameters that will lead to alternative achievable plans with different organ sparing objectives for treating the patient. The multiple sets for parameters can be used separately or in conjunction to generate treatment plans.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 22, 2019
    Assignees: Duke University, Wake Forest University Health Sciences
    Inventors: Fang-Fang Yin, Qingrong Jackie Wu, Lulin Yuan, Yaorong Ge
  • Publication number: 20180043184
    Abstract: Systems and methods for efficient and automatic determination of radiation beam configurations for patient-specific radiation therapy planning are disclosed. According to an aspect, a method includes receiving data based on patient information and geometric characterization of one or more organs at risk proximate to a target volume of a patient. The method includes determining automatically one or more radiation treatment beam configuration sets. Further, the method includes presenting the determined one or more radiation beam configuration sets via a user interface.
    Type: Application
    Filed: March 7, 2016
    Publication date: February 15, 2018
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Lulin Yuan
  • Publication number: 20180043182
    Abstract: Systems and methods for automated radiation treatment planning with decision support are disclosed. According to an aspect, a method includes receiving data based on patient information and geometric characterization of one or more organs at risk and a cancer target of a patient. The method also includes determining the appropriate models and model settings for the given patient case. Further, the method includes generating automatically one or more radiation treatment plans using the proper models learned from a plurality of radiation treatment plans of prior patient cases based on certain relationships, including one of a match or similarity, between the patient information and geometric characterization of the patient and the other patients. The method also includes presenting the determined one or more radiation treatment plans via a user interface.
    Type: Application
    Filed: March 7, 2016
    Publication date: February 15, 2018
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Lulin Yuan, Yang Sheng, Taoran Li, Jianfei Liu
  • Publication number: 20160129282
    Abstract: Disclosed herein are systems and methods for specifying treatment criteria and treatment planning parameters for patient specific radiation therapy planning. According to an aspect, a method includes receiving data about a patient, computing geometric characterization of one or more organs at risk proximate to a target volume of a patient or vice versa, and selecting relevant treatment knowledge and experience. The method also includes generating, based on the received data, computed geometric characterization, and available knowledge and experience, a first set of radiation treatment planning parameters that will lead to a high quality plan for the patient. Further, the method includes model-based prediction, based on the data, a second set or more of radiation treatment planning parameters that will lead to alternative achievable plans with different organ sparing objectives for treating the patient. The multiple sets for parameters can be used separately or in conjunction to generate treatment plans.
    Type: Application
    Filed: June 18, 2014
    Publication date: May 12, 2016
    Applicant: DUKE UNIVERSITY
    Inventors: Fang-Fang Yin, Qingrong Jackie Wu, Lulin Yuan, Yaorong Ge
  • Patent number: 8976929
    Abstract: An apparatus and method for automatically generating radiation treatment planning parameters are disclosed. In accordance with the illustrative embodiment, a database is constructed that stores: (i) patient data and past treatment plans by expert human planners for these patients, and (ii) optimal treatment plans that are generated using multi-objective optimization and Pareto front search and that represent the best tradeoff opportunities of the patient case, and a predictive model (e.g., a neural network, a decision tree, a support vector machine [SVM], etc.) is then trained via a learning algorithm on a plurality of input/output mappings derived from the contents of the database. During training, the predictive model is trained to identify and infer patterns in the treatment plan data through a process of generalization. Once trained, the predictive model can then be used to automatically generate radiation treatment planning parameters for new patients.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: March 10, 2015
    Assignee: Duke University
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Xiaofeng Zhu
  • Publication number: 20120014507
    Abstract: An apparatus and method for automatically generating radiation treatment planning parameters are disclosed. In accordance with the illustrative embodiment, a database is constructed that stores: (i) patient data and past treatment plans by expert human planners for these patients, and (ii) optimal treatment plans that are generated using multi-objective optimization and Pareto front search and that represent the best tradeoff opportunities of the patient case, and a predictive model (e.g., a neural network, a decision tree, a support vector machine [SVM], etc.) is then trained via a learning algorithm on a plurality of input/output mappings derived from the contents of the database. During training, the predictive model is trained to identify and infer patterns in the treatment plan data through a process of generalization. Once trained, the predictive model can then be used to automatically generate radiation treatment planning parameters for new patients.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 19, 2012
    Applicant: DUKE UNIVERSITY
    Inventors: Qingrong Jackie Wu, Yaorong Ge, Fang-Fang Yin, Xiaofeng Zhu