Patents by Inventor Qingwei Zhuang

Qingwei Zhuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230215166
    Abstract: A few-shot urban remote sensing image information extraction method based on meta learning and attention includes building a few-shot urban remote sensing information pre-trained model. During a pre-training stage, pre-training network learning is performed for a few-shot set to fully learn feature information of existing samples and obtain initial feature parameters and a deep convolutional network backbone of the few-shot set; the few-shot urban remote sensing information pre-trained model is a network structure including a convolutional layer, a pooling layer and a fully-connected layer, and includes five sections of convolutional network where each section includes two or three convolutional layers, and an end of each section is connected to one maximum pooling layer to reduce a size of a picture; the number of convolutional kernels inside each section is same, and when closer to the fully-connected layer, the number of convolutional kernels is larger.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 6, 2023
    Inventors: Zhenfeng SHAO, Qingwei ZHUANG
  • Patent number: 10809169
    Abstract: A system for in-situ testing of mechanical properties of materials in static and dynamic load spectra, that includes: an Arcan biaxial clamping subsystem, a press-in test subsystem, a biaxial fatigue test subsystem, a biaxial pre-tension loading subsystem, a signal detection subsystem, and a support and adjustment subsystem. A combined guide mechanism in the Arcan biaxial clamping subsystem is rigidly connected to a guide mechanism support block, an x-direction three sensor base and a y-direction force sensor base in the support and adjustment subsystem by threaded connections, respectively. A laser transmitter, a voice coil motor and a laser receiver in the press-in test subsystem are rigidly connected to a two-degree-of-freedom electric moving platform for the laser transmitter, a two-degree-of-freedom electric moving platform for the voice coil motor and a two-degree-of-freedom electric moving platform for the laser receiver in the support and adjustment subsystem by threaded connections, respectively.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: October 20, 2020
    Assignee: JILIN UNIVERSITY
    Inventors: Zhichao Ma, Hongwei Zhao, Luquan Ren, Shizhong Zhang, Jingshi Dong, Zunqiang Fan, Daining Fang, Jingchun Ma, Yongmao Pei, Qixun Zhang, Hui Fan, Qingwei Zhuang
  • Publication number: 20200124510
    Abstract: A system for in-situ testing of mechanical properties of materials in static and dynamic load spectra, that includes: an Arcan biaxial clamping subsystem, a press-in test subsystem, a biaxial fatigue test subsystem, a biaxial pre-tension loading subsystem, a signal detection subsystem, and a support and adjustment subsystem. A combined guide mechanism in the Arcan biaxial clamping subsystem is rigidly connected to a guide mechanism support block, an x-direction force sensor base and a y-direction force sensor base in the support and adjustment subsystem by threaded connections, respectively. A laser transmitter, a voice coil motor and a laser receiver in the press-in test subsystem are rigidly connected to a two-degree-of-freedom electric moving platform for the laser transmitter, a two-degree-of-freedom electric moving platform for the voice coil motor and a two-degree-of-freedom electric moving platform for the laser receiver in the support and adjustment subsystem by threaded connections, respectively.
    Type: Application
    Filed: October 12, 2016
    Publication date: April 23, 2020
    Applicant: JILIN UNIVERSITY
    Inventors: Zhichao Ma, Hongwei Zhao, Luquan Ren, Shizhong Zhang, Jingshi Dong, Zunqiang Fan, Daining Fang, Jingchun Ma, Yongmao Pei, Qixun Zhang, Hui Fan, Qingwei Zhuang
  • Patent number: 10012576
    Abstract: An in-situ testing equipment for testing micromechanical properties of a material in a multi-load and multi-physical field coupled condition is disclosed. The equipment comprises a frame supporting module, a tension/compression-low cycle fatigue module, a torsioning module (21), a three-point bending module (6), an impressing module (33), a thermal field and magnetic field application module (34), an in-situ observation module (32) and a clamp body module (22).
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: July 3, 2018
    Assignee: JILIN UNIVERSITY
    Inventors: Hongwei Zhao, Luquan Ren, Jianping Li, Hu Huang, Panfeng Zhang, Xiaoli Hu, Hongbing Cheng, Daining Fang, Zhichao Ma, Qingwei Zhuang, Jing Gao, Xiaolong Dong, Kehong Tang, Fu Zhang, Qing Zou, Yuxiang Zhu, Jingshi Dong, Zunqiang Fan, Yong Hu, Tao Shang
  • Publication number: 20160216182
    Abstract: An in-situ testing equipment for testing micromechanical properties of a material in a multi-load and multi-physical field coupled condition is disclosed. The equipment comprises a frame supporting module, a tension/compression-low cycle fatigue module, a torsioning module (21), a three-point bending module (6), an impressing module (33), a thermal field and magnetic field application module (34), an in-situ observation module (32) and a clamp body module (22).
    Type: Application
    Filed: March 3, 2014
    Publication date: July 28, 2016
    Inventors: Hongwei Zhao, Luquan Ren, Jianping Li, Hu Huang, Panfeng Zhang, Xiaoli Hu, Hongbing Cheng, Daining Fang, Zhichao Ma, Qingwei Zhuang, Jing Gao, Xiaolong Dong, Kehong Tang, Fu Zhang, Qing Zou, Yuxiang Zhu, Jingshi Dong, Zunqiang Fan, Yong Hu, Tao Shang