Patents by Inventor Qiong Huang

Qiong Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977133
    Abstract: A device for measuring magnetism of a permanent magnet material at a high temperature includes a laser device, a power controller, a light beam controller, a temperature controller, a magnetism measurement unit, temperature sensors, and electromagnet pole heads. The electromagnet pole heads are divided into an upper piece and a lower piece for clamping upper and lower surfaces of a sample. Heat absorbing sheets are respectively fixed on front and rear surfaces of the sample. Temperatures of the heat absorbing sheets are measured by the temperature sensors. The sample is heated by laser, and the temperature controller is used to adjust a ratio of light beams of the power controller and the light beam controller irradiating the heat absorbing sheets on the front and rear surfaces of the sample, thus adjusting the temperatures of the heat absorbing sheets. The magnetism of the sample is measured using the magnetism measurement unit.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: May 7, 2024
    Assignee: CHINA JILIANG UNIVERSITY
    Inventors: Qiong Wu, Hangfu Yang, Hongliang Ge, Nengjun Yu, Minxiang Pan, Xiani Huang, Zisheng Wang
  • Publication number: 20240103301
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have displays that produce images. Positioners may be used to move the displays relative to the eye positions of a user's eyes. An adjustable optical system may include tunable lenses such as tunable cylindrical liquid crystal lenses. The displays may be viewed through the lenses when the user's eyes are at the eye positions. A sensor may be incorporated into the head-mounted display to measure refractive errors in the user's eyes. The sensor may include waveguides and volume holograms, and a camera for gathering light that has reflected from the retinas of the user's eyes. Viewing comfort may be enhanced by adjusting display positions relative to the eye positions and/or by adjusting lens settings based on the content being presented on the display and/or measured refractive errors.
    Type: Application
    Filed: December 6, 2023
    Publication date: March 28, 2024
    Inventors: Victoria C. Chan, Christina G. Gambacorta, Graham B. Myhre, Hyungryul Choi, Nan Zhu, Phil M. Hobson, William W. Sprague, Edward A. Valko, Qiong Huang, Branko Petljanski, Paul V. Johnson, Brandon E. Clarke, Elijah H. Kleeman
  • Patent number: 11931363
    Abstract: A compound of Formula (I), or a pharmaceutically acceptable salt thereof, is provided that has been shown to be useful for treating a PRC2-mediated disease or disorder: wherein R1, R2, R3, R4, R5, and n are as defined herein.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: March 19, 2024
    Assignee: NOVARTIS AG
    Inventors: Ho Man Chan, Xiang-Ju Justin Gu, Ying Huang, Ling Li, Yuan Mi, Wei Qi, Martin Sendzik, Yongfeng Sun, Long Wang, Zhengtian Yu, Hailong Zhang, Ji Yue (Jeff) Zhang, Man Zhang, Qiong Zhang, Kehao Zhao
  • Patent number: 11874530
    Abstract: A head-mounted display may include a display system and an optical system in a housing. The display system may have displays that produce images. Positioners may be used to move the displays relative to the eye positions of a user's eyes. An adjustable optical system may include tunable lenses such as tunable cylindrical liquid crystal lenses. The displays may be viewed through the lenses when the user's eyes are at the eye positions. A sensor may be incorporated into the head-mounted display to measure refractive errors in the user's eyes. The sensor may include waveguides and volume holograms, and a camera for gathering light that has reflected from the retinas of the user's eyes. Viewing comfort may be enhanced by adjusting display positions relative to the eye positions and/or by adjusting lens settings based on the content being presented on the display and/or measured refractive errors.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: January 16, 2024
    Assignee: Apple Inc.
    Inventors: Victoria C. Chan, Christina G. Gambacorta, Graham B. Myhre, Hyungryul Choi, Nan Zhu, Phil M. Hobson, William W. Sprague, Edward A. Valko, Qiong Huang, Branko Petljanski, Paul V. Johnson, Brandon E. Clarke, Elijah H. Kleeman
  • Patent number: 11861941
    Abstract: Methods and apparatus for using polarized light (e.g., infrared (IR) light) to improve eye-related functions such as iris recognition. An eye camera system includes one or more IR cameras that capture images of the user's eyes that are processed to perform iris recognition, gaze tracking, or other functions. At least one polarizing element may be located in the path of the light which is used to capture images of the user's eye. The user's eye may be illuminated by IR light emitted by one or more LEDs. At least one of the LEDs may be an LED with a polarizing filter. Instead or in addition, at least one polarizer may be located at the eye camera sensor, in the eye camera optics, or as or in an additional optical element located on the light path between the eye camera and the user's eye.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 2, 2024
    Assignee: Apple Inc.
    Inventors: Keenan Molner, Qiong Huang, Branko Petljanski, Edward A. Valko, Tom Sengelaub, Martin Haller, Andrei Nikiforov, Hua Gao, Emanuele Mandelli
  • Publication number: 20230341815
    Abstract: Techniques related to generating holographic images for a holographic heads up display are discussed. Such techniques include application of a machine learning model to the target image to generate data that is used to enable the determination of a phase pattern via an iterative propagation feedback model. The iterative propagation feedback model is used to generate a feedback strength value, which is then used to generate a phase diffraction pattern for presentation at a holographic plane of the heads up display.
    Type: Application
    Filed: April 27, 2023
    Publication date: October 26, 2023
    Applicant: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Ronald T. Azuma
  • Publication number: 20230325516
    Abstract: A method for file encryption includes: determining, in response to obtaining a file to be encrypted, a first secret key for encrypting a file name according to the file name of the file to be encrypted; encrypting the file name according to the first secret key to obtain file name encryption information; and sending the file to be encrypted and the file name encryption information to a local service layer, in order that the local service layer encrypts a file content of the file to be encrypted based on the file to be encrypted and the file name encryption information. The local service layer is high in security and is not prone to be decompiled and cracked. Moreover, the encryption operation of the file content is mainly performed in the local service layer, so that the security protection of the encrypted file may be guaranteed.
    Type: Application
    Filed: July 14, 2021
    Publication date: October 12, 2023
    Applicant: SHENZHEN PAX SMART NEW TECHNOLOGY CO., LTD.
    Inventors: Lingcong ZENG, Aiping ZHOU, Qiong HUANG
  • Patent number: 11733648
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a hybrid system including a pre-trained deep neural network and a subsequent iterative process using a suitable propagation model to generate diffraction pattern image data for a target holographic image such that the diffraction pattern image data is to generate a holographic image when implemented via a holographic display.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Anders Grunnet-Jepsen, Paul Winer, Ronald T. Azuma, Ofir Mulla
  • Publication number: 20230230587
    Abstract: Hot word free adaptation, of function(s) of an automated assistant, responsive to determining, based on gaze measure(s) and/or active speech measure(s), that a user is engaging with the automated assistant. Implementations relate to techniques for mitigating false positive occurrences of and/or false negative occurrences, of hot word free adaptation, through utilization of a permissive parameter set in some situation(s) and a restrictive parameter set in other situation(s). For example, utilizing the restrictive parameter set when it is determined that a user is engaged in conversation with additional user(s). The permissive parameter set includes permissive parameter(s) that are more permissive than counterpart(s) in the restrictive parameter set.
    Type: Application
    Filed: January 19, 2022
    Publication date: July 20, 2023
    Inventors: Tuan Nguyen, Gabriel Leblanc, Qiong Huang, Alexey Galata, Tzu-Chan Chuang, William A. Truong, Yixing Cai, Yuan Yuan
  • Publication number: 20230230583
    Abstract: Hot word free adaptation, of one or more function(s) of an automated assistant, responsive to determining, based on gaze measure(s) and/or active speech measure(s), that a user is engaging with the automated assistant. Implementations relate to various techniques for mitigating false positive occurrences of and/or false negative occurrences, of hot word free adaptation, through utilization of personalized parameter(s) for at least some user(s) of an assistant device. The personalized parameter(s) are utilized in determining whether condition(s) are satisfied, where those condition(s), if satisfied, indicate that the user is engaging in hot word free interaction with the automated assistant and result in adaptation of function(s) of the automated assistant.
    Type: Application
    Filed: January 19, 2022
    Publication date: July 20, 2023
    Inventors: Tuan Nguyen, Gabriel Leblanc, Tzu-Chan Chuang, Qiong Huang, William A. Truong, Yixing Cai, Alexey Galata, Yuan Yuan
  • Patent number: 11650542
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a machine learning model to the target image to generate data that is used to enable the determination of a phase pattern via an iterative propagation feedback model. The iterative propagation feedback model is used to generate a feedback strength value, which is then used to generate a phase diffraction pattern for presentation at a holographic plane.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Ronald T. Azuma
  • Patent number: 11573528
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a machine learning model to the target image to generate data that is used to enable the determination of a phase pattern via a wave propagation model. The wave propagation model is used to generate holographic data, which is then adjusted according to one or more constraints associated with the holographic display that will be used to generate a holographic image based on the adjusted holographic data.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Ronald T. Azuma
  • Publication number: 20230019187
    Abstract: Disclosed herein are systems, apparatus, methods, and articles of manufacture to present three dimensional images without glasses. An example apparatus includes a micro lens array and at least one processor. The at least one processor is to: determine a first position of a first pupil of a viewer; determine a second position of a second pupil of the viewer; align a first eye box with the first position of the first pupil; align a second eye box with the second position of the second pupil; render, for presentation on a display, at least one of a color plus depth image or a light field image based on the first position of the first pupil and the second position of the second pupil; and cause backlight to be steered through the micro lens array and alternatingly through the first eye box and the second eye box.
    Type: Application
    Filed: August 26, 2022
    Publication date: January 19, 2023
    Inventors: Tuotuo Li, Joshua J. Ratcliff, Qiong Huang, Alexey M. Supikov, Ronald T. Azuma
  • Publication number: 20220357704
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a hybrid system including a pre-trained deep neural network and a subsequent iterative process using a suitable propagation model to generate diffraction pattern image data for a target holographic image such that the diffraction pattern image data is to generate a holographic image when implemented via a holographic display.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Applicant: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Anders Grunnet-Jepsen, Paul Winer, Ronald T. Azuma, Ofir Mulla
  • Patent number: 11435695
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a hybrid system including a pre-trained deep neural network and a subsequent iterative process using a sui table propagation model to generate diffraction pattern image data for a target holographic image such that the diffraction pattern image data is to generate a holographic image when implemented via a holographic display.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Anders Grunnet-Jepsen, Paul Winer, Ronald T. Azuma, Ofir Mulla
  • Patent number: 11438566
    Abstract: Disclosed herein are systems, apparatus, methods, and articles of manufacture to present three dimensional images without glasses. An example apparatus includes a micro lens array and at least one processor. The at least one processor is to: determine a first position of a first pupil of a viewer; determine a second position of a second pupil of the viewer; align a first eye box with the first position of the first pupil; align a second eye box with the second position of the second pupil; render, for presentation on a display, at least one of a color plus depth image or a light field image based on the first position of the first pupil and the second position of the second pupil; and cause backlight to be steered through the micro lens array and alternatingly through the first eye box and the second eye box.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: September 6, 2022
    Assignee: INTEL CORPORATION
    Inventors: Tuotuo Li, Joshua J. Ratcliff, Qiong Huang, Alexey M. Supikov, Ronald T. Azuma
  • Publication number: 20220269218
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a machine learning model to the target image to generate data that is used to enable the determination of a phase pattern via an iterative propagation feedback model. The iterative propagation feedback model is used to generate a feedback strength value, which is then used to generate a phase diffraction pattern for presentation at a holographic plane.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Applicant: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Ronald T. Azuma
  • Publication number: 20220214746
    Abstract: In one implementation, an apparatus includes: a display to emit light in a first wavelength range; one or more light sources to emit light in a second wavelength range; a camera to detect the light in the second wavelength range; and an eyepiece to reflect and refract the light in the first wavelength range while passing, without substantial distortion, the light in the second wavelength range, wherein the eyepiece includes two lens halves separated by a retarder that changes light in the first wavelength range from a first polarization to a second polarization different from the first polarization.
    Type: Application
    Filed: March 9, 2022
    Publication date: July 7, 2022
    Inventors: Noah D. Bedard, Branko Petljanski, John N. Border, Kathrin Berkner-Cieslicki, Qiong Huang
  • Patent number: 11378915
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a pre-trained deep neural network to a target holographic image to generate a feedback strength value for error feedback in an iterative propagation feedback model and generating a diffraction pattern image corresponding to the target holographic image by applying the iterative propagation feedback model based on the target holographic image and using the feedback strength value.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: July 5, 2022
    Assignee: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Ronald T. Azuma
  • Publication number: 20220197214
    Abstract: Techniques related to generating holographic images are discussed. Such techniques include application of a machine learning model to the target image to generate data that is used to enable the determination of a phase pattern via a wave propagation model. The wave propagation model is used to generate holographic data, which is then adjusted according to one or more constraints associated with the holographic display that will be used to generate a holographic image based on the adjusted holographic data.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Alexey Supikov, Qiong Huang, Ronald T. Azuma