Patents by Inventor Qiong Shen

Qiong Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11388044
    Abstract: A computer-program product, a system, and a computer-implemented method include a processor(s) obtaining a configuration of a network including configurations of multiple network nodes and configurations of the network communication devices. The program code automatically models the network to generate a system model. The program code derives, from the system model, a loop-free Bayesian inference model, by generating a loop-free Bayesian network from the network.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: July 12, 2022
    Assignee: Peraton Labs Inc.
    Inventors: Chi Leung Lau, David Shur, Qiong Shen, Kiran Rege, Rajesh Krishnan, Ta Chen, Andrzej Cichocki, Tom Banwell
  • Patent number: 9034340
    Abstract: The present invention discloses a codon-optimized gene encoding major capsid protein L1 of human papilloma virus, which is capable, after transduced into a yeast cell, of efficiently expressing the major capsid protein L1 of human papilloma virus. The present invention also discloses an immunogenic macromolecule which is essentially produced by expression of said codon-optimized gene encoding the major capsid protein L1 of human papilloma virus in a yeast cell. The present invention further discloses the use of said immunogenic macromolecule and a composition comprising said immunogenic macromolecule.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: May 19, 2015
    Assignee: Shanghai Zerun Biotechnology Co., Ltd.
    Inventors: Goaxia Zhang, Qiong Shen, Jianqiang Lei, Jingyu Yuan, Menghua Zhang, Qianli Zhang, Yinghua Xiong, Roger Wei, Ke Wu
  • Publication number: 20140328935
    Abstract: The present invention discloses a codon-optimized gene encoding major capsid protein L1 of human papilloma virus, which is capable, after transduced into a yeast cell, of efficiently expressing the major capsid protein L1 of human papilloma virus. The present invention also discloses an immunogenic macromolecule which is essentially produced by expression of said codon-optimized gene encoding the major capsid protein L1 of human papilloma virus in a yeast cell. The present invention further discloses the use of said immunogenic macromolecule and a composition comprising said immunogenic macromolecule.
    Type: Application
    Filed: June 5, 2014
    Publication date: November 6, 2014
    Inventors: Goaxia Zhang, Qiong Shen, Jianqiang Lei, Jingyu Yuan, Menghua Zhang, Qianli Zhang, Yinghua Xiong, Roger Wei, Ke Wu
  • Patent number: 8795676
    Abstract: The present invention discloses a codon-optimized gene encoding major capsid protein L1 of human papilloma virus, which is capable, after transduced into a yeast cell, of efficiently expressing the major capsid protein L1 of human papilloma virus. The present invention also discloses an immunogenic macromolecule which is essentially produced by expression of said codon-optimized gene encoding the major capsid protein L1 of human papilloma virus in a yeast cell. The present invention further discloses the use of said immunogenic macromolecule and a composition comprising said immunogenic macromolecule.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: August 5, 2014
    Assignee: Shanghai Zerun Biotechnology Co., Ltd.
    Inventors: Gaoxia Zhang, Qiong Shen, Jianqiang Lei, Jingyu Yuan, Menghua Zhang, Qianli Zhang, Yinghua Xiong, Roger Wei, Ke Wu
  • Patent number: 8227258
    Abstract: A liquid delivery apparatus is provided for depositing liquid materials onto prescribed areas. The apparatus includes a sensing and delivery pin and a photo sensor. The apparatus is sized to deliver a droplet of liquid material to the surface of a target area without coming into contact with the target surface. The apparatus is also capable of drawing geometric features, such as lines and grids of liquid material. The photo sensor measures the intensity of light during a processing cycle. Measured reflected-light intensity can be compared in real-time to a reference curve which is based on test process cycles representing the light intensity expected when the process proceeds in the preferred fashion to produce a normal spot having an expected droplet size. The light intensity measurements can also be fitted with a mathematical function such as an asymmetric double sigmoidal curve.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: July 24, 2012
    Assignee: New Jersey Institute of Technology
    Inventors: Timothy N. Chang, Qiong Shen
  • Publication number: 20110256182
    Abstract: The present invention discloses a codon-optimized gene encoding major capsid protein L1 of human papilloma virus, which is capable, after transduced into a yeast cell, of efficiently expressing the major capsid protein L1 of human papilloma virus. The present invention also discloses an immunogenic macromolecule which is essentially produced by expression of said codon-optimized gene encoding the major capsid protein L1 of human papilloma virus in a yeast cell. The present invention further discloses the use of said immunogenic macromolecule and a composition comprising said immunogenic macromolecule.
    Type: Application
    Filed: November 24, 2008
    Publication date: October 20, 2011
    Inventors: Gaoxia Zhang, Qiong Shen, Jianqiang Lei, Jingyu Yuan, Menghua Zhang, Qianli Zhang, Yinghua Xiong, Roger Wei, Ke Wu
  • Publication number: 20090253216
    Abstract: A liquid delivery apparatus is provided for depositing liquid materials onto prescribed areas. The apparatus includes a sensing and delivery pin and a photo sensor. The apparatus is sized to deliver a droplet of liquid material to the surface of a target area without coming into contact with the target surface. The apparatus is also capable of drawing geometric features, such as lines and grids of liquid material. The photo sensor measures the intensity of light during a processing cycle. Measured reflected-light intensity can be compared in real-time to a reference curve which is based on test process cycles representing the light intensity expected when the process proceeds in the preferred fashion to produce a normal spot having an expected droplet size. The light intensity measurements can also be fitted with a mathematical function such as an asymmetric double sigmoidal curve.
    Type: Application
    Filed: February 11, 2009
    Publication date: October 8, 2009
    Inventors: Timothy N. CHANG, Qiong SHEN