Patents by Inventor Qiquan Yu

Qiquan Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6297189
    Abstract: A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: October 2, 2001
    Assignee: The Regents of the University of California
    Inventors: Yun Jin, Qiquan Yu, Shih-Ger Chang
  • Publication number: 20010000475
    Abstract: A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.
    Type: Application
    Filed: December 5, 2000
    Publication date: April 26, 2001
    Inventors: Yun Jin, Qiquan Yu, Shih-Ger Chang
  • Patent number: 5494879
    Abstract: The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: February 27, 1996
    Assignee: Regents, University of California
    Inventors: Yun Jin, Qiquan Yu, Shih-Ger Chang