Patents by Inventor Qisheng Huo

Qisheng Huo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8158545
    Abstract: A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: April 17, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Liyu Li, David L. King, Jun Liu, Qisheng Huo
  • Patent number: 7763665
    Abstract: Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block polymers which act as structure directing agents for the metal oxide in a self-assembling system.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: July 27, 2010
    Assignee: The Regents of the University of California
    Inventors: Galen D. Stucky, Bradley F. Chmelka, Dongyuan Zhao, Nick Melosh, Qisheng Huo, Jianglin Feng, Peidong Yang, David Pine, David Margolese, Wayne Lukens, Jr., Glenn H. Fredrickson, Patrick Schmidt-Winkel
  • Publication number: 20090114093
    Abstract: A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.
    Type: Application
    Filed: June 17, 2008
    Publication date: May 7, 2009
    Inventors: Liyu Li, David L. King, Jun Liu, Qisheng Huo
  • Patent number: 7439055
    Abstract: A device for detecting and measuring the concentration of biomolecules in solution, utilizing a conducting electrode in contact with a solution containing target biomolecules, with a film with controllable pore size distribution characteristics applied to at least one surface of the conducting electrode. The film is functionalized with probe molecules that chemically interact with the target biomolecules at the film surface, blocking indicator molecules present in solution from diffusing from the solution to the electrode, thereby changing the electrochemical response of the electrode.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: October 21, 2008
    Assignee: Sandia Corporation
    Inventors: Qisheng Huo, Jun Liu
  • Patent number: 7410762
    Abstract: A method for detecting and measuring the concentration of biomolecules in solution, utilizing a conducting electrode in contact with a solution containing target biomolecules, with a film with controllable pore size distribution characteristics applied to at least one surface of the conducting electrode. The film is functionalized with probe molecules that chemically interact with the target biomolecules at the film surface, blocking indicator molecules present in solution from diffusing from the solution to the electrode, thereby changing the electrochemical response of the electrode.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: August 12, 2008
    Assignee: Sandia Corporation
    Inventors: Qisheng Huo, Jun Liu
  • Publication number: 20070256978
    Abstract: Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block polymers which act as structure directing agents for the metal oxide in a self-assembling system.
    Type: Application
    Filed: December 5, 2006
    Publication date: November 8, 2007
    Inventors: Galen Stucky, Bradley Chmelka, Dongyuan Zhao, Nick Melosh, Qisheng Huo, Jianglin Feng, Peidong Yang, David Pine, David Margolese, Wayne Lukens, Glenn Fredrickson, Patrick Schmidt-Winkel
  • Patent number: 7176245
    Abstract: Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block polymers which act as structure directing agents for the metal oxide in a self-assembling system.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: February 13, 2007
    Assignee: The Regents of the University of California
    Inventors: Galen D. Stucky, Bradley F. Chmelka, Dongyuan Zhao, Nick Melosh, Qisheng Huo, Jianglin Feng, Peidong Yang, David Pine, David Margolese, Wayne Lukens, Jr., Glenn H. Fredrickson, Patrick Schmidt-Winkel
  • Publication number: 20030205528
    Abstract: Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block polymers which act as structure directing agents for the metal oxide in a self-assembling system.
    Type: Application
    Filed: April 30, 2003
    Publication date: November 6, 2003
    Inventors: Galen D. Stucky, Bradley F. Chmelka, Glenn H. Fredrickson, Patrick Schmidt-Winkel, Dongyuan Zhao, Qisheng Huo, Peidong Yang, David Pine, Wayne Lukens, Nick Melosh, David Margolese, Jianglin Feng
  • Patent number: 6632767
    Abstract: The low stability of some molecular sieves can be overcome during calcination by a solid state reaction between the molecular sieve and a salt. Molecular sieves including zeolites, metal substituted aluminosilicates, and metallosilicates can be stabilized by this method. The inventive process comprises mixing such molecular sieve with a salt, either directly or as a slurry; and then heating the resulting mixture to remove water, organics and adsorbed species.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: October 14, 2003
    Assignee: Praxair Technology, Inc.
    Inventors: Qisheng Huo, Neil Andrew Stephenson
  • Patent number: 6592764
    Abstract: Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block copolymers which act as structure directing agents for the metal oxide in a self-assembling system.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: July 15, 2003
    Assignee: The Regents of the University of California
    Inventors: Galen D. Stucky, Bradley F. Chmelka, Dongyuan Zhao, Nick Melosh, Qisheng Huo, Jianglin Feng, Peidong Yang, David Pine, David Margolese, Wayne Lukens, Jr., Glenn H. Fredrickson, Patrick Schmidt-Winkel
  • Patent number: 6551573
    Abstract: A low silica AFI zeolite and a high purity gmelinite zeolite that have a SiO2/Al2O3 ratio of about 10 or less are provided.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: April 22, 2003
    Assignee: Praxair Technology, Inc.
    Inventor: Qisheng Huo
  • Publication number: 20020119887
    Abstract: The low stability of some molecular sieves can be overcome during calcination by a solid state reaction between the molecular sieve and a salt. Molecular sieves including zeolites, metal substituted aluminosilicates, and metallosilicates can be stabilized by this method. The inventive process comprises mixing such molecular sieve with a salt, either directly or as a slurry; and then heating the resulting mixture to remove water, organics and adsorbed species.
    Type: Application
    Filed: December 19, 2000
    Publication date: August 29, 2002
    Inventors: Qisheng Huo, Neil Andrew Stephenson
  • Publication number: 20020098147
    Abstract: A low silica AFI zeolite and a high purity gmelinite zeolite that have a SiO2/Al2O3 ratio of about 10 or less are provided.
    Type: Application
    Filed: March 27, 2002
    Publication date: July 25, 2002
    Inventor: Qisheng Huo
  • Patent number: 6423295
    Abstract: A low silica AFI zeolite and a high purity gmelinite zeolite that have a SiO2/Al2O3 ratio of about 10 or less are provided.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: July 23, 2002
    Assignee: Praxair Technology, Inc.
    Inventor: Qisheng Huo
  • Publication number: 20020076376
    Abstract: A low silica AFI zeolite and a high purity gmelinite zeolite that have a SiO2/Al2O3 ratio of about 10 or less are provided.
    Type: Application
    Filed: December 19, 2000
    Publication date: June 20, 2002
    Inventor: Qisheng Huo