Patents by Inventor Qiyi Luo

Qiyi Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11213413
    Abstract: A stent is disclosed, which includes a stent body (2) and a single-radiopaque component (1) disposed at one or each of a proximal end and a distal end of the stent body (2). The stent body (2) is composed of rings and struts, and one part of the single-radiopaque component (1) is received in a receptacle (3) of the stent body (2) and another part of the single-radiopaque component (1) protrudes out of a surface of the stent body (2). The area of the protruding part (11) of the single-radiopaque component (1) is larger than an area of the embedded part (10), the presence of the protruding part (11) allowing the single-radiopaque component (1) to appear wider and thicker in a radiologic image, enhancing the radiopacity of the stent during surgery.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 4, 2022
    Assignee: SHANGHAI MICROPORT MEDICAL (GROUP) CO., LTD.
    Inventors: Chubo Huang, Zhilong Li, Bin Xia, Wei Liu, Hao Tian, Qiyi Luo
  • Publication number: 20210378845
    Abstract: A stent is disclosed, which includes a stent body and a single-radiopaque component disposed at one or each of a proximal end and a distal end of the stent body. The stent body is composed of rings and struts, and one part of the single-radiopaque component is received in a receptacle of the stent body and another part of the single-radiopaque component protrudes out of a surface of the stent body. The area of the protruding part of the single-radiopaque component is larger than an area of the embedded part, the presence of the protruding part allowing the single-radiopaque component to appear wider and thicker in a radiologic image, enhancing the radiopacity of the stent during surgery.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Inventors: Chubo HUANG, Zhilong LI, Bin XIA, Wei LIU, Hao TIAN, Qiyi LUO
  • Publication number: 20210212674
    Abstract: A left atrial appendage (LAA) closure (1) and a system (6) for delivering the LAA closure are disclosed. The LAA closure (1) includes supporting struts (11), wherein the supporting struts (11) are distributed peripherally around a first hub (10) and extend outward, the supporting strut (11) bifurcates at a first position (110) into a left branch (111) and a right branch (112). The left branch (111) of each supporting strut (11) and the right branch (112) of an adjacent supporting strut join each other at a second position (113) and extend distally to form a distal end. The LAA closure further includes a supporting rod (12) between adjacent supporting struts (11) which ensures stability, absence of irregular deformation and lateral slippage, of the LAA closure (1). With the supporting rods (12) between the adjacent supporting struts (11), the LAA closure (1) forms a dense mesh which imparts high overall strength of the LAA closure (1).
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Inventors: Zhen WANG, Yi ZHOU, Yao YAO, Junfei LI, Qiyi LUO, Haiyong HUANG
  • Patent number: 11039822
    Abstract: A left atrial appendage (LAA) closure (1) and a system (6) for delivering the LAA closure are disclosed. The LAA closure (1) includes supporting struts (11), wherein the supporting struts (11) are distributed peripherally around a first hub (10) and extend outward, the supporting strut (11) bifurcates at a first position (110) into a left branch (111) and a right branch (112). The left branch (111) of each supporting strut (11) and the right branch (112) of an adjacent supporting strut join each other at a second position (113) and extend distally to form a distal end. The LAA closure further includes a supporting rod (12) between adjacent supporting struts (11) which ensures stability, absence of irregular deformation and lateral slippage, of the LAA closure (1). With the supporting rods (12) between the adjacent supporting struts (11), the LAA closure (1) forms a dense mesh which imparts high overall strength of the LAA closure (1).
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: June 22, 2021
    Assignee: SHANGHAI MICROPORT MEDICAL (GROUP) CO., LTD.
    Inventors: Zhen Wang, Yi Zhou, Yao Yao, Junfei Li, Qiyi Luo, Haiyong Huang
  • Patent number: 10918479
    Abstract: A stent (1) used for a heart valve prosthesis and the heart valve prosthesis that includes the stent (1) and is used for heart valve replacement. The stent is configured to support a heart valve (3) and includes, along a longitudinal axis, an inflow section (8), an outflow section (6) and a transition section (7) between the inflow section (8) and the outflow section (6). The stent (1) has a contracted delivery configuration and an expanded deployed configuration. In the expanded deployed configuration, the inflow section (8) defines a concave contour that is complementary to a structure of a native valve annulus. The concave contour enables self-deployment and close adherence of the stent (1), thereby preventing its displacement and perivalvular leakage after implantation.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: February 16, 2021
    Assignee: SHANGHAI MICROPORT CARDIOFLOW MEDTECH CO., LTD.
    Inventors: Guoming Chen, Yu Li, Feng Huang, Lei Huang, Jianchao Han, Yihao Duan, Shaohui Chen, Qiyi Luo
  • Publication number: 20200060850
    Abstract: A stent is disclosed, which includes a stent body (2) and a single-radiopaque component (1) disposed at one or each of a proximal end and a distal end of the stent body (2). The stent body (2) is composed of rings and struts, and one part of the single-radiopaque component (1) is received in a receptacle (3) of the stent body (2) and another part of the single-radiopaque component (1) protrudes out of a surface of the stent body (2). The area of the protruding part (11) of the single-radiopaque component (1) is larger than an area of the embedded part (10), the presence of the protruding part (11) allowing the single-radiopaque component (1) to appear wider and thicker in a radiologic image, enhancing the radiopacity of the stent during surgery.
    Type: Application
    Filed: February 12, 2018
    Publication date: February 27, 2020
    Inventors: Chubo HUANG, Zhilong LI, Bin XIA, Wei LIU, Hao TIAN, Qiyi LUO
  • Patent number: 10392472
    Abstract: A biodegradable cross-linked polymer and methods of preparing same are provided. The biodegradable cross-linked polymer is formed from a biodegradable polymeric material having two or more arms, which is a random copolymer formed of a first monomer and a second monomer different from the first monomer. The first monomer is selected from the group consisting of L-lactide, DL-lactide, glycolid, ?-caprolactone, trimethylene carbonate, p-dioxanone, amino acid-derived polycarbonates and polyorthoesters. The second monomer is one or two selected from the group consisting of D-lactide, DL-lactide, glycolide, ?-caprolactone, trimethyl carbonate, salicylic acid, carbonates, amino acids and derivatives thereof. The biodegradable polymeric material has a molecular weight of from 5,000 to 1,200,000 and an intrinsic viscosity of from 0.1 to 9.0 dl/g. Each of the terminal groups on the arms of the biodegradable polymeric material is selected from the group consisting of hydroxyl amino and carboxyl groups.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: August 27, 2019
    Assignee: Shanghai Microport Medical (Group) Co., Ltd.
    Inventors: Hongyan Jiang, Qiyi Luo, Juan Hou, Yahong Kang, Jing Wang, Wei Wang
  • Patent number: 10383978
    Abstract: A dry animal-derived collagen fiber tissue material and preparation method and bioprosthesis thereof are disclosed. The preparation method includes: 1) rinsing of an animal-derived collagen fiber tissue material that has been treated with a crosslinking agent; 2) immersion of the rinsed tissue material in a non-aqueous alcoholic solution for dehydration; 3) successive immersion of the tissue material that has been dehydrated with the non-aqueous alcoholic solution in saccharide solutions of different gradients of concentrations for gradient dehydration; 4) taking out and drying of the gradient dehydrated tissue material; and 5) hermetic packaging of the dried tissue material and sterilization. The preparation method is simple and allows the use of easily-available low-cost materials, resulting in lower costs. In addition, it can reduce the toxicity caused by a residue of the aldehyde crosslinking agent.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: August 20, 2019
    Assignee: SHANGHAI MICROPORT CARDIOFLOW MEDTECH CO., LTD.
    Inventors: Jiaoming Dong, Yemeng Chen, Guanbiao Xu, Xiulan Cheng, Guoming Chen, Yu Li, Qiyi Luo
  • Publication number: 20190117204
    Abstract: A left atrial appendage (LAA) closure (1) and a system (6) for delivering the LAA closure are disclosed. The LAA closure (1) includes supporting struts (11), wherein the supporting struts (11) are distributed peripherally around a first hub (10) and extend outward, the supporting strut (11) bifurcates at a first position (110) into a left branch (111) and a right branch (112). The left branch (111) of each supporting strut (11) and the right branch (112) of an adjacent supporting strut join each other at a second position (113) and extend distally to form a distal end. The LAA closure further includes a supporting rod (12) between adjacent supporting struts (11) which ensures stability, absence of irregular deformation and lateral slippage, of the LAA closure (1). With the supporting rods (12) between the adjacent supporting struts (11), the LAA closure (1) forms a dense mesh which imparts high overall strength of the LAA closure (1).
    Type: Application
    Filed: March 16, 2017
    Publication date: April 25, 2019
    Applicant: Shanghai Microport Medical (Group) Co., Ltd.
    Inventors: Zhen WANG, Yi ZHOU, Yao YAO, Junfei LI, Qiyi LUO, Haiyong HUANG
  • Publication number: 20190046316
    Abstract: A stent (1) used for a heart valve prosthesis and the heart valve prosthesis that includes the stent (1) and is used for heart valve replacement. The stent is configured to support a heart valve (3) and includes, along a longitudinal axis, an inflow section (8), an outflow section (6) and a transition section (7) between the inflow section (8) and the outflow section (6). The stent (1) has a contracted delivery configuration and an expanded deployed configuration. In the expanded deployed configuration, the inflow section (8) defines a concave contour that is complementary to a structure of a native valve annulus. The concave contour enables self-deployment and close adherence of the stent (1), thereby preventing its displacement and perivalvular leakage after implantation.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Guoming CHEN, Yu LI, Feng HUANG, Lei HUANG, Jianchao HAN, Yihao DUAN, Shaohui CHEN, Qiyi LUO
  • Publication number: 20190003016
    Abstract: An alloy material and an implantable medical device using the alloy material are disclosed. The material contains the following elements in the weight percentages given: magnesium: less than 3%; selenium: 0.001%-0.5%; strontium: 0.001%-0.5%; zinc: the remainder.
    Type: Application
    Filed: December 16, 2016
    Publication date: January 3, 2019
    Applicant: Shanghai Microport Medical (Group) Co., Ltd.
    Inventors: Yating CAO, Yao YAO, Junfei LI, Qiyi LUO
  • Patent number: 10098769
    Abstract: A device and method for loading an implant into a delivery system are disclose which are capable of simplifying operations required in interventional surgery using the implant. The device includes a guide cap (1), a guider (2) and a guiding tube (3). The guide cap (1) has a conical section (101) and a straight or conical tube (103) in communication with a small open end (102) of the conical section, and the conical section has a large open end (104) that flares outward, thereby forming a flange (105) facing the tube (103). The guider (2) has tapered sections (9, 10) that are tapered along an axis of the guider and thus form large and small open ends (8, 11). The small open end (11) has a diameter greater than a diameter of the small open end (102) of the conical section of the guide cap (1).
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: October 16, 2018
    Assignee: SHANGHAI MICROPORT CARDIOFLOW MEDTECH CO., LTD.
    Inventors: Xiang Liu, Mingming Wu, Yu Li, Zhixiu He, Baozhu Gui, Haishan Wang, Guoming Chen, Shaohui Chen, Qiyi Luo
  • Patent number: 10080674
    Abstract: A branched stent graft, a convey system comprising thereof and manufacturing method thereof, the branched stent graft includes a main body (100) and a side branch (200), at least a portion of a lowermost stent section of the side branch (200) closest to the main body (100) is not stitched to the cover of the side branch from a lower end to an upper end, the at least a portion of the lowermost stent section is located on a side of the side branch corresponding to a folding direction of the side branch. After deployed, the branched stent graft has an effective supporting force at the base portion of the side branch. In addition, during the deployment of the stent, the side branch can expand to a maximal extent even when the positioning is slightly inaccurate. Further, vascular stenosis or occlusion will not be caused even when subsequent endothelialization occurs.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: September 25, 2018
    Assignee: MICROPORT ENDOVASCULAR (SHANGHAI) CO., LTD.
    Inventors: Zhenyu Yuan, Qing Zhu, Yanbin Gao, Zhonghua Li, Qiyi Luo
  • Publication number: 20180265630
    Abstract: A biodegradable cross-linked polymer and methods of preparing same are provided. The biodegradable cross-linked polymer is formed from a biodegradable polymeric material having two or more arms, which is a random copolymer formed of a first monomer and a second monomer different from the first monomer. The first monomer is selected from the group consisting of L-lactide, DL-lactide, glycolid, ?-caprolactone, trimethylene carbonate, p-dioxanone, amino acid-derived polycarbonates and polyorthoesters. The second monomer is one or two selected from the group consisting of D-lactide, DL-lactide, glycolide, ?-caprolactone, trimethyl carbonate, salicylic acid, carbonates, amino acids and derivatives thereof. The biodegradable polymeric material has a molecular weight of from 5,000 to 1,200,000 and an intrinsic viscosity of from 0.1 to 9.0 dl/g. Each of the terminal groups on the arms of the biodegradable polymeric material is selected from the group consisting of hydroxyl amino and carboxyl groups.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 20, 2018
    Inventors: Hongyan JIANG, Qiyi LUO, Juan HOU, Yahong KANG, Jing WANG, Wei WANG
  • Patent number: 10045847
    Abstract: An electric handle for delivering an implant is disclosed. The electric handle (1) includes an electric control unit (10), a power-driven transmission mechanism (20), a handle housing (30), an outer tube anchor (40) and an inner tube anchor (50), wherein: the electric control unit (10) is operatively coupled to the power-driven transmission mechanism (20) to actuate the power-driven transmission mechanism (20); the power-driven transmission mechanism (20) is supported within the handle housing (30) and moveable together with the outer tube anchor (40); the inner tube anchor (50) is disposed within the handle housing (30) and is configured to hold an inner tube (3) of a delivery system; and the outer tube anchor (40) is configured to hold an outer tube (2) of the delivery system and is fixed to an end of the outer tube (2). A delivery system used especially for delivery of prosthetic valves is also disclosed, including an outer tube (2), an inner tube (3), an expandable implant (4) and the electric handle (1).
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: August 14, 2018
    Assignee: Shanghai Microport Cardioflow Medtech Co., Ltd.
    Inventors: Xiang Liu, Zhixiu He, Yu Li, Baozhu Gui, Mingming Wu, Haishan Wang, Qiyi Luo
  • Publication number: 20180133365
    Abstract: A dry animal-derived collagen fiber tissue material and preparation method and bioprosthesis thereof are disclosed. The preparation method includes: 1) rinsing of an animal-derived collagen fiber tissue material that has been treated with a crosslinking agent; 2) immersion of the rinsed tissue material in a non-aqueous alcoholic solution for dehydration; 3) successive immersion of the tissue material that has been dehydrated with the non-aqueous alcoholic solution in saccharide solutions of different gradients of concentrations for gradient dehydration; 4) taking out and drying of the gradient dehydrated tissue material; and 5) hermetic packaging of the dried tissue material and sterilization. The preparation method is simple and allows the use of easily-available low-cost materials, resulting in lower costs. In addition, it can reduce the toxicity caused by a residue of the aldehyde crosslinking agent.
    Type: Application
    Filed: May 4, 2016
    Publication date: May 17, 2018
    Applicant: Shanghai Microport Cardioflow Medtech Co., Ltd.
    Inventors: Jiaoming DONG, Yemeng CHEN, Guanbiao XU, Xiulan CHENG, Guoming CHEN, Yu LI, Qiyi LUO
  • Patent number: 9951178
    Abstract: The present invention relates to the field of medical instruments. Specifically, a biodegradable cross-linked polymer and a manufacturing method therefor are provided. The cross-linked polymer is obtained by bonding crosslinkable reactive groups to terminal groups of a biodegradable prepolymer having two or more arms and further subjecting the prepolymer to thermal polymerization and/or light irradiation. The cross-linked polymer has an elastic modulus of 10-4,500 MPa, and a degradation rate of 3-36 months. A biodegradable vascular stent and a preparation method therefor are also provided. The vascular stent is formed by laser cutting of polymeric tubing having a three-dimensional cross-linked network structure. The vascular stent has ample mechanical strength, a high elastic modulus at body temperature, and a regulatable degradation rate.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: April 24, 2018
    Assignee: Shanghai Micoport Medical (Group) Co., Ltd.
    Inventors: Hongyan Jiang, Qiyi Luo, Juan Hou, Yahong Kang, Jing Wang, Wei Wang
  • Patent number: 9642731
    Abstract: A degradable polyester stent is disclosed, which includes a polyester composite, wherein the polyester composite is produced from a biodegradable polyester and a metal-based material. A method of preparing the degradable polyester stent is also disclosed. The method can improve the mechanical properties of the biodegradable copolymer stent and can achieve the radiopacity of the main body and the overall of the stent.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 9, 2017
    Assignee: SHANGHAI MICROPORT MEDICAL (GROUP) CO., LTD.
    Inventors: Shuguo Chen, Juan Meng, Baoai Chen, Qiyi Luo
  • Publication number: 20160278955
    Abstract: A device and method for loading an implant into a delivery system are disclose which are capable of simplifying operations required in interventional surgery using the implant. The device includes a guide cap (1), a guider (2) and a guiding tube (3). The guide cap (1) has a conical section (101) and a straight or conical tube (103) in communication with a small open end (102) of the conical section, and the conical section has a large open end (104) that flares outward, thereby forming a flange (105) facing the tube (103). The guider (2) has tapered sections (9, 10) that are tapered along an axis of the guider and thus form large and small open ends (8, 11). The small open end (11) has a diameter greater than a diameter of the small open end (102) of the conical section of the guide cap (1).
    Type: Application
    Filed: October 31, 2014
    Publication date: September 29, 2016
    Inventors: Xiang LIU, Mingming WU, Yu LI, Zhixiu HE, Baozhu GUI, Haishan WANG, Guoming CHEN, Shaohui CHEN, Qiyi LUO
  • Patent number: 9433709
    Abstract: An interventional medical device and manufacturing method thereof. The interventional medical device comprises: a stent body (1); a surface of the stent body (1) being provided with a drug releasing structure (3), and drug in the drug releasing structure (3) being drug for suppressing proliferation of adventitial fibroblasts and a drug for suppressing proliferation of intimal and/or smooth muscle cells. In use, after interventional medical device is implanted into a human body, the drug for suppressing proliferation of adventitial fibroblasts carried thereon can promote the compensatory expansion of the vessel, and the drug for suppressing proliferation of intimal cells and/or smooth muscle cells carried thereon can suppress intimal proliferation of the vessel. The combination of the two kinds of drugs greatly reduces the occurrence rate of in-stent restenosis.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: September 6, 2016
    Assignee: SHANGHAI MICROPORT MEDICAL (GROUP) CO., LTD.
    Inventors: Dadong Zhang, Xu Cai, Chengyun Yue, Junfei Li, Yan Hu, Peng Huang, Zhirong Tang, Qiyi Luo