Patents by Inventor Qiyuan Ma

Qiyuan Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030020553
    Abstract: A tunable superconductor apparatus or associated method. The apparatus comprises a coil, a first superconductor film portion, a second superconductor film portion, and an actuator. The first superconductor film portion is electrically coupled to the coil. The second superconductor film portion is inductively coupled to the first superconductor film portion. Displacement of the second superconductor film portion relative to the first superconductor film portion changes the capacitance between the second superconductor film portion and the first superconductor film portion. The actuator is capable of relatively displacing the second superconductor film portion and the first superconductor film portion to change a resonant frequency of the tunable superconductor apparatus.
    Type: Application
    Filed: September 20, 2001
    Publication date: January 30, 2003
    Applicant: Supertron Technologies, Inc.
    Inventors: Erzhen Gao, Qiyuan Ma
  • Patent number: 6169399
    Abstract: A superconducting multiple resonance probe for detecting multiple nuclei resonating at different frequencies for use in magnetic resonance imaging, microscopy and spectroscopy. The probe is configured as having two or more superconducting coils in close proximity, each coil tuned to a different frequency, where an adjustment is made for a frequency shift caused by the mutual inductance between the coils. The coils can be placed in concentrically in a plane or can be vertically layered.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: January 2, 2001
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Kuan Zhang, Jason R. Miller, Ki Mun, Qiyuan Ma
  • Patent number: 5952269
    Abstract: A method for forming a superconducting device using a selective etching technique on superconducting thin films. The method utilizes rapid etching which combines ion implantation with chemical etching. The portions of the superconducting film to be retained are masked from the ion implantation process. The chemical etching process then removes the implanted portions of the superconducting film at a much faster rate than the portions not implanted so that only the un-implanted portions remain. The resulting superconducting devices can be used, e.g., as nanostructures and nano tips, bolometers, multilayer RF coils, microwave waveguides and filters.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: September 14, 1999
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Qiyuan Ma, Mingling Chen
  • Patent number: 5345114
    Abstract: Current controlled superconductor switches formed by reactive patterning or other fabrication techniques may be used to form logic circuits including OR, AND, NOR, NAND, and NOT gates, a circuit breaker or an analog-to-digital converter. Each switch contains a superconductor resistor electrically connected in parallel with a non-superconductor resistor. The superconductor resistor has a critical current I.sub.c, such that it exhibits no electrical resistance to current flow less than I.sub.c, and exhibits positive electrical resistance to current flow greater than or equal to I.sub.c. The switch can accordingly be toggled between two states (i.e. superconducting and non-superconducting) by suitably controlling the current flowing through the switch. This switching behaviour provides the basis for constructing logic gates and other digital circuit devices.
    Type: Grant
    Filed: October 15, 1992
    Date of Patent: September 6, 1994
    Inventors: Qiyuan Ma, Walter N. Hardy
  • Patent number: 5343012
    Abstract: The temperature of a substrate on which a thin film structure is to be fabricated in a low pressure environment is controlled by supporting the substrate on a heater block having a rim which defines first and second regions between the substrate and the heater block. The first region is inside the rim. The second region is outside the rim, surrounding the first region. Heat is applied to the heater block and an inert gas having good thermal conductivity is pumped through the block into the first region at a first controlled pressure. Gas is pumped away from the second region at a second pressure substantially less than the first pressure. A pressure differential is thus maintained between the two regions. This prevents the inert gas from contaminating the thin film fabrication environment by escaping past the substrate into the fabrication environment.
    Type: Grant
    Filed: October 6, 1992
    Date of Patent: August 30, 1994
    Inventors: Walter N. Hardy, Qiyuan Ma